|
Record |
Links |
|
Author |
Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A. |
|
|
Title |
Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Biochimica et biophysica acta : G : general subjects |
Abbreviated Journal |
Bba-Gen Subjects |
|
|
Volume |
1861 |
Issue |
1861 |
Pages |
839-847 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.
Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.
Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.
General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000397366200012 |
Publication Date |
2017-01-27 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-4165 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.702 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem |
Approved |
Most recent IF: 4.702 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:140095 |
Serial |
4413 |
|
Permanent link to this record |