|
Record |
Links |
|
Author |
Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B. |
|
|
Title |
Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
RSC advances |
Abbreviated Journal |
Rsc Adv |
|
|
Volume |
7 |
Issue |
7 |
Pages |
4453-4459 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000393751300030 |
Publication Date |
2017-01-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2046-2069 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.108 |
Times cited |
9 |
Open Access |
OpenAccess |
|
|
Notes |
; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; |
Approved |
Most recent IF: 3.108 |
|
|
Call Number |
UA @ lucian @ c:irua:141543 |
Serial |
4528 |
|
Permanent link to this record |