toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. url  doi
openurl 
  Title Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184106-184107  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318653800001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109010 Serial 3638  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title First-principles study of possible shallow donors in ZnAl2O4 spinel Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 17 Pages 174101-174107  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (ZnAl) and Al at the Zn site (AlZn). The antisite defect AlZn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318653300001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes Iwt; Fwo Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108769 Serial 1219  
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year (down) 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. pdf  doi
openurl 
  Title Klein paradox for a pn junction in multilayer graphene Type A1 Journal article
  Year (down) 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27001-27005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Charge carriers in single and multilayered graphene systems behave as chiral particles due to the particular lattice symmetry of the crystal. We show that the interplay between the meta-material properties of graphene multilayers and the pseudospinorial properties of the charge carriers result in the occurrence of Klein and anti-Klein tunneling for rhombohedral stacked multilayers. We derive an algebraic formula predicting the angles at which these phenomena occur and support this with numerical calculations for systems up to four layers. We present a decomposition of an arbitrarily stacked multilayer into pseudospin doublets that have the same properties as rhombohedral systems with a lower number of layers. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700017 Publication Date 2013-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 17 Open Access  
  Notes ; We thank S. GILLIS for valuable discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109665 Serial 1763  
Permanent link to this record
 

 
Author Celebi, S.; Sezgin, M.E.; Çakir, D.; Baytan, B.; Demirkaya, M.; Sevinir, B.; Bozdemir, S.E.; Gunes, A.M.; Hacimustafaoglu, M. doi  openurl
  Title Catheter-associated bloodstream infections in pediatric hematology-oncology patients Type A1 Journal article
  Year (down) 2013 Publication Pediatric Hematology And Oncology Abbreviated Journal Pediatr Hemat Oncol  
  Volume 30 Issue 3 Pages 187-194  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Catheter-associated bloodstream infections (CABSIs) are common complications encountered with cancer treatment. The aims of this study were to analyze the factors associated with recurrent infection and catheter removal in pediatric hematology-oncology patients. All cases of CABSIs in patients attending the Department of Pediatric Hematology-Oncology between January 2008 and December 2010 were reviewed. A total of 44 episodes of CABSIs, including multiple episodes involving the same catheter, were identified in 31 children with cancer. The overall CABSIs rate was 7.4 infections per 1000 central venous catheter (CVC) days. The most frequent organism isolated was coagulase-negative Staphylococcus (CONS). The CVC was removed in nine (20.4%) episodes. We found that hypotension, persistent bacteremia, Candida infection, exit-side infection, neutropenia, and prolonged duration of neutropenia were the factors for catheter removal. There were 23 (52.2%) episodes of recurrence or reinfection. Mortality rate was found to be 9.6% in children with CABSIs. In this study, we found that CABSIs rate was 7.4 infections per 1000 catheter-days. CABSIs rates in our hematology-oncology patients are comparable to prior reports. Because CONS is the most common isolated microorganism in CABSIs, vancomycin can be considered part of the initial empirical regimen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos Publication Date 2013-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-0018 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.12 Times cited Open Access  
  Notes Approved Most recent IF: 1.12; 2013 IF: 0.963  
  Call Number UA @ lucian @ c:irua:128324 Serial 4589  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Vos, W.; de Backer, J.; Poli, G.; De Volder, A.; Ghys, L.; Van Holsbeke, C.; Vinchurkar, S.; De Backer, L.; de Backer, W. pdf  doi
openurl 
  Title Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol Type A1 Journal article
  Year (down) 2013 Publication Respiration Abbreviated Journal Respiration  
  Volume 86 Issue 5 Pages 393-401  
  Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Background: Inhaled formulations using extrafine particles of long-acting beta(2)-agonists and corticosteroids were developed to optimize asthma treatment. Findings that these combinations reach and treat smaller airways more effectively are predominantly based on general non-specific outcomes with little information on regional characteristics. Objectives: This study aims to assess long-term effects of extrafine beclomethasone/formoterol on small airways of asthmatic patients using novel functional imaging methods. Methods: Twenty-four stable asthma patients were subdivided into three groups (steroid naive, n = 7; partially controlled, n = 6; well controlled, n = 11). Current treatment was switched to a fixed combination of extrafine beclomethasone/formoterol (Foster (R); Chiesi Pharmaceuticals, Parma, Italy). Patients underwent lung function evaluation and thorax high-resolution computerized tomography (HRCT) scan. Local airway resistance was obtained from computational fluid dynamics (CFD). Results: After 6 months, the entire population showed improvement in pre-bronchodilation imaging parameters, including small airway volume (p = 0.0007), resistance (p = 0.011), and asthma control score (p = 0.016). Changes in small airway volume correlated with changes in asthma control score (p = 0.004). Forced expiratory volume in 1 s (p = 0.044) and exhaled nitric oxide (p = 0.040) also improved. Functional imaging provided more detail and clinical relevance compared to lung function tests, especially in the well-controlled group where only functional imaging parameters showed significant improvement, while the correlation with asthma control score remained. Conclusions: Extrafine beclomethasone/formoterol results in a significant reduction of small airway obstruction, detectable by functional imaging (HRCT/CFD). Changes in imaging parameters correlated significantly with clinically relevant improvements. This indicates that functional imaging is a useful tool for sensitive assessment of changes in the respiratory system after asthma treatment. Copyright (C) 2013 S. Karger AG, Basel  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Basel Editor  
  Language Wos 000329046200006 Publication Date 2013-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1423-0356;0025-7931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.772 Times cited 30 Open Access  
  Notes ; ; Approved Most recent IF: 2.772; 2013 IF: 2.924  
  Call Number UA @ lucian @ c:irua:113762 Serial 2376  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134509-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317390000006 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108469 Serial 3660  
Permanent link to this record
 

 
Author Masir, M.R.; Moldovan, D.; Peeters, F.M. pdf  doi
openurl 
  Title Pseudo magnetic field in strained graphene : revisited Type A1 Journal article
  Year (down) 2013 Publication Solid state communications Abbreviated Journal Solid State Commun  
  Volume 175 Issue Pages 76-82  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We revisit the theory of the pseudo magnetic field as induced by strain in graphene using the tight- binding approach. A systematic expansion of the hopping parameter and the deformation of the lattice vectors is presented from which we obtain an expression for the pseudo magnetic field for low energy electrons. We generalize and discuss previous results and propose a novel effective Hamiltonian. The contributions of the different terms to the pseudo field expression are investigated for a model triaxial strain profile and are compared with the full solution. Our work suggests that the previous proposed pseudo magnetic field expression is valid up to reasonably high strain (15%) and there is no K-dependent pseudo-magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000329538200010 Publication Date 2013-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.554 Times cited 57 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EURO- CORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem programme of the Flemish government. Approved Most recent IF: 1.554; 2013 IF: 1.698  
  Call Number UA @ lucian @ c:irua:114805 Serial 2737  
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. url  doi
openurl 
  Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 16 Pages 165409-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000317195400007 Publication Date 2013-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 365 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108471 Serial 134  
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. url  doi
openurl 
  Title Thermal properties of fluorinated graphene Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 10 Pages 104114-104116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316933500002 Publication Date 2013-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108495 Serial 3629  
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M. url  doi
openurl 
  Title Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 12 Pages 125415-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316383700006 Publication Date 2013-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 171 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108277 Serial 2605  
Permanent link to this record
 

 
Author De Beule, C.; Partoens, B. url  doi
openurl 
  Title Gapless interface states at the junction between two topological insulators Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 11 Pages 115113-115116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a junction between two topological insulators and calculate the properties of the interface states with an effective low-energy Hamiltonian for topological insulators with a single cone on the surface. This system bears a close resemblance to bilayer graphene, as both result from the hybridization of Dirac cones. We find gapless interface states not only when the helicity directions of the topological surface states are oppositely oriented, but they can also exist if they are equally oriented. Furthermore, we find that the existence of the interface states can be understood from the closing of the bulk gap when the helicity changes orientation. Recently superluminal tachyonic excitations were also claimed to exist at the interface between topological insulators. However, here we show that these interface states do not exist. DOI: 10.1103/PhysRevB.87.115113  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316101100002 Publication Date 2013-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; The authors would like to thank Dr. O. Leenaerts for the helpful discussions. This work was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108282 Serial 1316  
Permanent link to this record
 

 
Author Van Holsbeke, C.; Vos, W.; van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; de Backer, J.; De Backer, W.; Verhulst, S.L. pdf  doi
openurl 
  Title Functional respiratory imaging as a tool to assess upper airway patency in children with obstructive sleep apnea Type A1 Journal article
  Year (down) 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 14 Issue 5 Pages 433-439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Objective: We aim to investigate if anatomical and functional properties of the upper airway using computerized 3D models derived from computed tomography (CT) scans better predict obstructive sleep apnea (OSA) severity than standard clinical markers. Methods: Consecutive children with suspected OSA underwent polysomnography, clinical assessment of upper airway patency, and a CT scan while awake. A three-dimensional (3D) reconstruction of the pharyngeal airway was built from these images, and computational fluid dynamics modeling of low inspiratory flow was performed using open-source software. Results: Thirty-three children were included (23 boys; mean age, was 6.0 +/- 3.2 y). OSA was diagnosed in 23 patients. Children with OSA had a significantly lower volume of the overlap region between tonsils and the adenoids (median volume, 1408 mm compared to 2173 mm; p = 0.04), a lower mean cross-sectional area at this location (median volume, 69.3 mm(2) compared to 114.3 mm(2); p = 0.04), and a lower minimal cross-sectional area (median volume, 17.9 mm(2) compared to 25.9 mm(2); p = 0.05). Various significant correlations were found between several imaging parameters and the severity of OSA, most pronounced for upper airway conductance (r = -0.46) (p < 0.01) for correlation between upper airway conductance and the apnea-hypopnea index. No differences or significant correlations were observed with clinical parameters of upper airway patency. Preliminary data after treatment showed that none of the patients with residual OSA had their smallest cross-sectional area located in segment 3, and this frequency was significantly lower than in their peers whose sleep study normalized (64%; p = 0.05). Conclusion: Functional imaging parameters are highly correlated with OSA severity and are a more powerful correlate than clinical scores of upper airway patency. Preliminary data also showed that we could identify differences in the upper airway of those subjects who did not benefit from a local upper airway treatment. (c) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000318612100009 Publication Date 2013-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.391 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.391; 2013 IF: 3.100  
  Call Number UA @ lucian @ c:irua:109015 Serial 1302  
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075443-75445  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315375200008 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107655 Serial 2622  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial 60  
Permanent link to this record
 

 
Author Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S.K.; Los, J.H.; Peeters, F.M. url  doi
openurl 
  Title Spiral graphone and one-sided fluorographene nanoribbons Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075448-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T = 1000 K within our simulation time of 1 ns. DOI: 10.1103/PhysRevB.87.075448  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315481800005 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; We thank A. Sadeghi, M. R. Ejtehadi, and J. Amini for their useful comments. This work is supported by the ESF EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). M.N.-A. is supported by a EU-Marie Curie IIF fellowship program Grant No. 299855. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107654 Serial 3106  
Permanent link to this record
 

 
Author Barba-Ortega, J.; Sardella, E.; Aguiar, J.A.; Peeters, F.M. pdf  doi
openurl 
  Title Non-conventional vortex configurations in a mesoscopic flat disk Type A1 Journal article
  Year (down) 2013 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 487 Issue Pages 47-55  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000317743300009 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 17 Open Access  
  Notes ; This work was partially supported by the Brazilian agencies CNPq, CAPES, FACEPE (APQ 0589-105/08), FAPESP, CNPq-FWO bilateral project, and Colombian Agencies Colciencias and DIB. ; Approved Most recent IF: 1.404; 2013 IF: 1.110  
  Call Number UA @ lucian @ c:irua:108486 Serial 2344  
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors : a Green function approach Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064510-64513  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315374100009 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). R.S. thanks M. R. Norman, B. Soree, and L. Komendova for useful comments. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107072 Serial 487  
Permanent link to this record
 

 
Author Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085314-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315278000003 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107656 Serial 3165  
Permanent link to this record
 

 
Author Grujić, M.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Antiferromagnetism in hexagonal graphene structures : rings versus dots Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085434-85436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Themean-field Hubbard model is used to investigate the formation of the antiferromagnetic phase in hexagonal graphene rings with inner zigzag edges. The outer edge of the ring was taken to be either zigzag or armchair, and we found that both types of structures can have a larger antiferromagnetic interaction as compared with hexagonal dots. This difference could be partially ascribed to the larger number of zigzag edges per unit area in rings than in dots. Furthermore, edge states localized on the inner ring edge are found to hybridize differently than the edge states of dots, which results in important differences in the magnetism of graphene rings and dots. The largest staggered magnetization is found when the outer edge has a zigzag shape. However, narrow rings with armchair outer edge are found to have larger staggered magnetization than zigzag hexagons. The edge defects are shown to have the least effect on magnetization when the outer ring edge is armchair shaped. DOI: 10.1103/PhysRevB.87.085434  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315146600005 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the EuroGRAPHENE programme of the ESF (project CONGRAN), the Serbian Ministry of Education, Science, and Technological Development, and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107661 Serial 137  
Permanent link to this record
 

 
Author Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085423-85429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale. DOI: 10.1103/PhysRevB.87.085423  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315146500008 Publication Date 2013-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 281 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107663 Serial 62  
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M. doi  openurl
  Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
  Year (down) 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 12 Issue 2 Pages 115-122  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000320044900007 Publication Date 2013-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved Most recent IF: 1.526; 2013 IF: 1.372  
  Call Number UA @ lucian @ c:irua:109615 Serial 2950  
Permanent link to this record
 

 
Author Li, B.; Djotyan, A.P.; Hao, Y.L.; Avetisyan, A.A.; Peeters, F.M. url  doi
openurl 
  Title Effect of a perpendicular magnetic field on the shallow donor states near a semiconductor-metal interface Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075313-75319  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the influence of an external perpendicular magnetic field on the lowest-energy states of an electron bound to a donor which is located near a semiconductor-metal interface. The problem is treated within the effective mass approach and the lowest-energy states are obtained through (1) the “numerically exact” finite element method, and (2) a variational approach using a trial wave function where all image charges that emerge due to the presence of the metallic gate are taken into account. The trial wave functions are constructed such that they reduce to an exponential behavior for sufficiently small magnetic fields and become Gaussian for intermediate and large magnetic fields. The average electron-donor distance can be controlled by the external magnetic field. We find that the size of the 2p(z) state depends strongly on the magnetic field when the donor is close to the interface, showing a nonmonotonic behavior, in contrast with the ground and the other excited states. DOI: 10.1103/PhysRevB.87.075313  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314874800017 Publication Date 2013-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107664 Serial 793  
Permanent link to this record
 

 
Author Villegas, C.E.P.; Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M. url  doi
openurl 
  Title Sorting the modes contributing to guidance in strain-induced graphene waveguides Type A1 Journal article
  Year (down) 2013 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 15 Issue Pages 023015-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We propose a simple way of probing the number of modes contributing to the channeling in graphene waveguides which are formed by a gauge potential produced by mechanical strain. The energy mode structure for both homogeneous and non-homogeneous strain regimes is carefully studied using the continuum description of the Dirac equation. We found that high strain values privilege negative (instead of positive) group velocities throughout the guidance, sorting the types of modes flowing through it. We also show how the effect of a substrate-induced gap competes against the strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000314868000002 Publication Date 2013-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 7 Open Access  
  Notes ; This work was supported by FAPESP, CNPq and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.786; 2013 IF: 3.671  
  Call Number UA @ lucian @ c:irua:107667 Serial 3056  
Permanent link to this record
 

 
Author Zhu, J.-J.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Plasmonic excitations in Coulomb-coupled N-layer graphene structures Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085401-85408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study Dirac plasmons and their damping in spatially separated N-layer graphene structures at finite doping and temperatures. The plasmon spectrum consists of one optical excitation with square-root dispersion and N – 1 acoustical excitations with linear dispersion, which are undamped at zero temperature and finite doping within a triangular energy region outside the electron-hole continuum. In the long-wavelength limit the energy and weight of the optical plasmon modes increase, respectively, as the square root and linearly with N in agreement with recent experimental findings. The energy and weight of the upper-lying acoustical branches also increase with N. This increase is strongest for the uppermost acoustical mode, and we find that its energy can exceed at some value of momentum the plasmon energy in an individual graphene sheet. Meanwhile, the energy of the low-lying acoustical branches decreases weakly with N as compared with the single acoustical mode in double-layer graphene structures. Our numerical calculations provide a detailed understanding of the overall behavior of the wave-vector dependence of the optical and acoustical multilayer plasmon modes and show how their dispersion and damping are modified as a function of temperature, interlayer spacing, and inlayer carrier density in (un)balanced graphene multilayer structures. DOI: 10.1103/PhysRevB.87.085401  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314682900005 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107671 Serial 2645  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000003 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110087 Serial 3048  
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Field effect on surface states in a doped Mott-insulator thin film Type A1 Journal article
  Year (down) 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035131-35136  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single-band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport. DOI: 10.1103/PhysRevB.87.035131  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000001 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110086 Serial 1190  
Permanent link to this record
 

 
Author Lucena, D.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Tunable diffusion of magnetic particles in a quasi-one-dimensional channel Type A1 Journal article
  Year (down) 2013 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 87 Issue 1 Pages 012307-12309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field. DOI: 10.1103/PhysRevE.87.012307  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000314152300005 Publication Date 2013-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 11 Open Access  
  Notes ; This work was supported by CNPq, CAPES, FUNCAP (Pronex grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, the collaborative program CNPq – FWO-Vl, and the Brazilian program Science Without Borders (CsF). Discussions with V. R. Misko are gratefully acknowledged. ; Approved Most recent IF: 2.366; 2013 IF: 2.326  
  Call Number UA @ lucian @ c:irua:110089 Serial 3739  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: