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Plasmonic excitations in Coulomb-coupled N-layer graphene structures
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We study Dirac plasmons and their damping in spatially separated N -layer graphene structures at finite doping
and temperatures. The plasmon spectrum consists of one optical excitation with square-root dispersion and N − 1
acoustical excitations with linear dispersion, which are undamped at zero temperature and finite doping within
a triangular energy region outside the electron-hole continuum. In the long-wavelength limit the energy and
weight of the optical plasmon modes increase, respectively, as the square root and linearly with N in agreement
with recent experimental findings. The energy and weight of the upper-lying acoustical branches also increase
with N . This increase is strongest for the uppermost acoustical mode, and we find that its energy can exceed
at some value of momentum the plasmon energy in an individual graphene sheet. Meanwhile, the energy of
the low-lying acoustical branches decreases weakly with N as compared with the single acoustical mode in
double-layer graphene structures. Our numerical calculations provide a detailed understanding of the overall
behavior of the wave-vector dependence of the optical and acoustical multilayer plasmon modes and show how
their dispersion and damping are modified as a function of temperature, interlayer spacing, and inlayer carrier
density in (un)balanced graphene multilayer structures.
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I. INTRODUCTION

Graphene,1,2 a single-atom sheet of graphite, has attracted
considerable attention due to its zero band-gap electronic
structure with massless linear and chiral dispersion of charge
carriers.3,4 These unique characteristics lead to numerous new
phenomena such as Klein tunneling,5 the ambipolar field
effect,1,6 finite minimum conductivity,2,7 ultrahigh mobility,8,9

and the anomalous quantum Hall effect.2,10 With these
novel properties,11,12 graphene presents itself as an extremely
promising candidate material for the future generation of
electronics.13,14

Graphene structures open a new arena also for studying
fundamental many-body interaction phenomena, which can
play also an important role in graphene based electronic
devices.15 Particularly, electron-phonon interaction phenom-
ena have become a subject of active study in single-layer
graphene structures in zero16–19 and finite magnetic fields.20–23

Substantial efforts have been directed toward the investigation
of the linear response of doped graphene,24 of charge-
density excitations,25–29 and of such complex quasiparticles
as plasmarons30,31 and plasmon-phonon complexes.32 Re-
cently, the experimental realization of graphene double-layer
structures coupled only via the Coulomb interaction33–38 has
attracted substantial theoretical interest in studying double-
layer plasmon effects39–42 and frictional drag43 in two spatially
separated graphene layers44–52 as powerful tools for probing
interaction effects of massless Dirac fermions.

One of the key quantities when investigating plasmon
properties in Fermi-liquid theory53 is the dynamical po-
larizability, which, together with the Coulomb interaction
potential, determines the dielectric function of an electronic
system and describes its dispersive and dissipative properties.
Recent theoretical calculations of the bubble diagram of
the Lindhard polarization function, �0(ω,q), in monolayer
graphene25–27 showed that, for an arbitrary bosonic frequency
ω and momentum q, its dependence on the carrier density, n,
is weaker, �0(ω,q) ∝ √

n, than the dependence �0(ω,q) ∝

n in conventional two-dimensional electron systems with
a parabolic energy dispersion. As a direct consequence,
the frequency of charge-density waves, ωp, in a quantum
system of chiral massless Dirac fermions shows a unique
carrier density scaling, ωp ∝ n1/4, which differs from the
conventional two-dimensional plasma ωp ∝ n1/2. The weak
dependence of the plasmon frequency and its weight on the
carrier doping level can be a limiting factor in the realization of
effective control and tunability of graphene based applications,
which due to many novel properties hold a promise of
completely new functionalities in optolectronics and terahertz
metamaterials.54–57

Recently, Ref. 58 demonstrated experimentally a new
tunable photonic device based on graphene-insulator stacks,
formed by depositing N = 5 alternating wafer-scale graphene
sheets and thin insulating layers. Measurements58 of light-
plasmon coupling in such graphene multilayer structures
(GMLS) show that distributing carriers into several graphene
layers enhances effectively the plasmon frequency and the
magnitude of the extinction of the light transmission in com-
parison with that in single-layer graphene with the same total
density. The measured frequency and weight enhancement
of the in-phase optical plasmon mode follow, respectively, a
square-root and a linear dependence on the number of graphene
sheets in GMLS, i.e.,

√
N and N , which differ from the

weak inlayer density dependencies, n1/4 and n1/2, obtained,
respectively, for the plasmon frequency and its weight both
in single-25–29 and double-layer39–42 graphene structures. This
effect is different from that in conventional two-dimensional
systems in semiconductors. If exchange and correlations
effects59 are neglected, the in-phase plasmon frequency and
weight in such N -layer systems are determined only by the
total density, ntot = Nn, as

√
ntot and are independent of N

for a fixed ntot. The observed unusual behavior of the in-phase
optical plasmon mode in GMLS has been ascribed58 to the
nonclassical plasmon frequency of massless Dirac fermions,
which depends explicitly on the Planck constant h̄.
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In this paper we present a detailed study of the spectrum
of multilayer optical and acoustical plasmon modes in GMLS,
consisting of a finite number N of spatially separated graphene
layers, where Dirac fermions are coupled only via many-body
Coulomb interaction. Within the usual plasmon theory, based
on the matrix Dyson equation for the Coulomb propagator
in GMLS, we calculate the dispersion relations and Landau
damping of multilayer plasmons and provide an understanding
of their dependencies on the in-layer electron density and the
number of graphene layers N . The plasmon modes obtained
here for structures with a finite number of graphene layers
are qualitatively different from the modes obtained previously
in infinite graphene superlattices28 and in structures with
a conventional parabolic spectrum of electrons.60 We find
that the plasmon spectrum consists of one optical mode
with a square-root dispersion and N − 1 acoustical modes
with linear dispersions in the bosonic momentum q. In the
long-wavelength limit all these modes are undamped at zero
temperature and for finite doping. In this limit we derive
analytical formulas for the frequencies of multilayer optical
and acoustical plasmon modes in GMLS. The frequency and
the weight of the optical plasmons show an enhancement,
respectively, as

√
N and N , in full agreement with the

measurements of Ref. 58. We find that in GMLS the velocity
of acoustical plasmons at vanishing momenta q is given
by a universal formula with different effective screening
wave vectors, which differ from the Thomas-Fermi screening
wave vector in an individual graphene sheet by numerical
factors, determined by the total number of graphene layers
N and by the index of acoustical modes. Furthermore, we
present detailed numerical calculations of the plasmon energy
spectrum and the damping function in the full range of
momenta in GMLS, consisting of up to N = 5 graphene layers.
Our comprehensive study includes finite temperature effects
in different configurations of density balanced and unbalanced
GMLS.

The paper is organized as follows. In Sec. II we present
the model and use it to describe the multilayer plasmon
modes in GMLS. Here we derive analytical expressions for
the plasmon spectrum in N -layer graphene structures in the
long-wavelength limit. In Sec. III, we present our numerical
calculations for arbitrary momentum and discuss the energy
dispersions of the optical and acoustical plasmon modes and
their corresponding damping as a function of N . In this section
we study the effect of finite temperatures on the behavior of
multilayer plasmon modes in different density balanced and
unbalanced configurations of GMLS. In Sec. IV, we close the
paper with a summary of our main results.

II. THEORETICAL MODEL AND ANALYTICAL RESULTS

We consider GMLS consisting of N Coulomb coupled
graphene layers, which are equidistant with interlayer spac-
ing d. We obtain the elementary excitations of the multilayer
plasmon modes from the poles of the exact Coulomb Green’s
function V̂ (q,ω). In such GMLS the bare Coulomb interaction
is a symmetric tensor:

vij (q) = v(q) exp (−|i − j |qd) , (1)

with respect to the layer indices i,j = 1,2, . . . ,N . Here d is
the interlayer spacing. The nondiagonal elements in Eq. (1)
represent different interlayer electron-electron interactions,
while the diagonal elements are given by the Fourier trans-
form of the intralayer Coulomb potential in two-dimensional
momentum space, v(q) = 2πe2/κq. According to the experi-
mental situation of Ref. 58, here we assume that the dielectric
background of the environment surrounding graphene layers
is homogeneous and can be well described by an average
effective dielectric constant κ . The matrix kernel v̂(q) = vij (q)
determines a standard matrix Dyson equation for the exact
Coulomb Green’s function:

V̂ (q,ω) = v̂(q) + v̂(q) · �̂(q,ω) · V̂ (q,ω), (2)

where �̂(q,ω) is the irreducible polarization function of the
GMLS. As seen from Eq. (2), the poles of the exact Coulomb
Green’s functions are given by the zeros of the real part of the
scalar screening function:

�εN (q,ω) = 0, (3)

with

εN (q,ω) = det|1 − v̂(q) · �̂(q,ω)|. (4)

In experiment the interlayer spacing in GMLS is sufficiently
large so that the electrons in different spatially separated
graphene monolayers are coupled only by the many-body in-
terlayer Coulomb interaction; i.e., electron tunneling between
layers is not significant, and we can neglect the nondiagonal
elements of the polarizability and take �̂(q,ω) = δij�

i(q,ω).
In the self-consistent random-phase approximation,53 �i(q,ω)
is given in terms of the noninteracting Lindhard polarization
function �i

0(q,ω), calculated quantum mechanically from the
bubble diagrams in the ith graphene monolayer with electron
density ni . This approximation neglects vertex corrections;29

however, it usually provides a satisfactory description of the
plasmon modes within the Fermi-liquid formalism.

In balanced GMLS with an equal electron density in all
monolayers, ni = n0, the screening function can be repre-
sented as a product:

εN (q,ω) =
N∏

i=1

[
1 − f i

N (qd)v(q)�0(q,ω)
]
, (5)

where the set of N different algebraic functions f i
N determines

the actual dispersion relations of the plasmon modes in GMLS.
An important feature of the Coulomb interaction is that for an
arbitrary number of layers N one of these functions f 1

N in
the long-wavelength limit does not depend on the bosonic
momentum q and is given, namely, by the number of layers in
GMLS:

f 1
N (qd) = N. (6)

Accordingly, f 1
N determines the frequency of the in-phase

optical plasmon mode with a square-root dispersion with q.
Moreover, it can be shown that the remaining N − 1 functions
f i

N with i = 2, . . . ,N vanish linearly with q in this limit and
can be represented as

f 1+i
N (qd) = αi

Nqd. (7)
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These functions identify the N − 1 out-of-phase acoustical
plasmon modes with a linear dispersion. The numerical
coefficients αi

N with i = 1, . . . ,N − 1 determine the velocity
of the ith acoustical mode.

As seen from Eq. (5) the effective polarizability for the
in-phase optical mode is �in = N�0(q,ω). Its imaginary part
determines the weight of the optical plasmon and, in agreement
with the experimental findings of Ref. 58, is additive in the
number N of monolayer graphene sheets in GMLS. This con-
clusion is independent of the quantum-mechanical properties
of the electron motion in each graphene layer that determines
the properties of the Lindhard polarization function �0(q,ω)
of single monolayer graphene. In the long-wavelength limit
the in-phase optical plasmon mode can be obtained from
the high-frequency dynamical (vF q � ω � εF ) asymptote
of the Lindhard function, which can be written in the following
universal form:

�0(q,ω) ∝ εF

h̄

q2

ω2
. (8)

In conventional two-dimensional electron gases with parabolic
dispersion, the Fermi energy increases linearly with the doping
level, εF ∝ n0; therefore, the total in-phase polarizability
given by Eq. (8) is additive in the total number of electrons,
�in ∝ ntot with ntot = Nn0, while the in-phase optical plasmon
frequency ωop ∝ √

ntot. The situation is strikingly different
in GMLS. The unique spectrum of Dirac fermions with
constant velocity implies that the Fermi energy in a graphene
monolayer, εF = vF kF with kF = √

πn0, is a square-root
function of the inlayer density n0; hence, the total in-phase
polarizability of GMLS, again given by Eq. (8), is no longer
additive in ntot. However, by virtue of Eq. (6), it is still additive
in the number of layers N , so that we have �in ∝ N

√
n0 and

ωop ∝ √
Nn0

1/4, which is again in agreement with the recent
measurements of Ref. 58.

Because the dispersion of the acoustical plasmon modes
is linear, one cannot41,61 use the dynamical (ω/q → ∞) limit
Eq. (8) of the Lindhard function in the long-wavelength limit
in order to obtain the plasmon velocity. Instead, we obtain
the dispersion of acoustical modes making use of the exact
expression26 for the zero-temperature Lindhard polarization
function in graphene. Thus, in the long-wavelength limit we
find the following square-root and linear energy dispersions:

ωop(q) =
√

Nq
ge2vF kF

κ
, ωi

ac(q) = 1 + αi
NqTFd√

1 + 2αi
NqTFd

vF q,

(9)

respectively, for one optical and N − 1 acoustical multilayer
plasmon modes. Here g = 4 accounts for the spin and
valley degeneracy in graphene and qTF = 4e2k2

F /(κεF ) is
the Thomas-Fermi screening wave vector in graphene. The
numerical factors αi

N (i = 1, . . . ,N − 1) of the ith acoustical
mode are uniquely determined by the total number of graphene
layers N in GMLS. For N = 2 we have only one coefficient,
α1

2 = 1, and the above formulas recover the previous results
obtained for the plasmon dispersions in double-layer graphene
structures.39,41,42 For GMLS consisting of N = 3 graphene

layers, we find the two coefficients

α1
3 = 2, α2

3 = 2/3, (10)

corresponding to the two acoustical plasmon modes. For N =
5 the four different velocities of the acoustical plasmon modes
in Eq. (3) are given in terms of the following coefficients:

α
1,2
5 = 4

3 ± √
5
, α

3,4
5 = 4

5 ± √
5
. (11)

In the limit of small qTFd, the separations between ith and
j th acoustical modes from the top of the intra-sub-band
electron-hole continuum differ in the long-wavelength limit by
a factor of γN = (ωi

ac − vF q)/(ωj
ac − vF q) = (αi

N/α
j

N )2. This
gives a factor of γ3 ≈ 9 difference for the acoustical branches
in GMLS with N = 3, while for N = 5 the difference for
the most distant acoustical modes is even larger, by a factor
of γ5 ≈ 90. In experiment, however, the parameter qTFd is
typically not very small and this difference is moderate. For
the inlayer carrier density n0 = 1012 cm−2 and the interlayer
spacing d = 5 nm taking κ = 3.8, we have qTFd ≈ 2 and this
gives γ2 ≈ 3 while γ5 ≈ 7.

III. PLASMON DISPERSIONS IN MULTILAYER
GRAPHENE STRUCTURES

In this section we present our numerical calculations for
the energy dispersions and Landau damping of multilayer
plasmon modes both in balanced and unbalanced GMLS
with up to N = 5 graphene layers. We calculate the energy
spectrum from the general formula Eq. (3) of the dispersion
equation with the screening function Eq. (4). For the diagonal
elements of the polarization function �i

0(q,ω) we make
use of the exact semianalytical formulas from Ref. 62 for
the Lindhard polarization function and study also the effect
of finite temperature both on the plasmon dispersion and
damping. The Landau damping of the plasmon modes can
be well described by the broadening function of the respective
energy dispersions:


i(q) = 
(q,ω)|ω=ωi (q) , (12)

where the function


(q,ω) = 	�0(q,ω)

∂��0(q,ω)/∂ω
(13)

gives the property of the electron-hole continuum to cause
damping of the elementary excitations.

Through the calculations we assume that GMLS has a
homogenous dielectric background with the dielectric constant
κ = 3.8. In actual calculations of the dispersion relations
we set also the imaginary part of �i

0(q,ω) to zero63 in the
screening function Eq. (4), which provides a correct asymptote
for the spectral branches of multilayer plasmons in the limit
of d → ∞. In all figures we use for temperature, plasmon
energy and momentum the units TF , εF and kF , respectively.
For the electron density n = 1012 cm−2 we have TF = εF ≈
116.5 meV and kF ≈ 1.77 × 106 cm−1.

In Fig. 1 we plot the dispersion relations of multilayer
plasmons in graphene structures with N = 2,3,4, and 5 layers.
The plasmon dispersion in a single layer is shown also by a thin
line for reference. We see a clear shift of the in-phase optical
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FIG. 1. (Color online) The plasmon dispersions at finite temper-
ature T = 0.1TF in GMLS consisting of N = 2,3,4, and 5 graphene
monolayers (shown in bold parallel lines in each panel) for the
interlayer separation d = 5 nm. The upper solid curve represents
the optical plasmon mode with the square-root dispersion; the lower
dotted, dashed, dotted-dashed, and long-dashed curves represent
acoustical branches of the plasmon spectrum with linear dispersions.
The thin black line represents the plasmon mode in an individual
graphene layer. The doping level in each layer corresponds to the
in-layer carrier density ni = n0 = 1012 cm−2. The thick dot-dashed
lines show the boundaries of inter- and intra-sub-band electron-
hole continua. The thick dot-dashed lines show the boundaries
of the electron-hole continuum. All quantities in this figure are
dimensionless.

plasmon mode toward higher energies when we increase the
number of graphene layers. This enhancement is strongest at
wave vectors around q = 0.3kF , where we find an increase
of the distance between the multilayer and the single-layer
optical plasmon modes of about 0.17εF for a double-layer
structure, N = 2, and of about 0.39εF for GMLS, consisting
of N = 5 graphene layers. Strong modifications occur also for
multilayer acoustical plasmons. With increasing N we find
an increase of the number of multilayer out-of-phase modes
and also an enhancement in the energy of the upper-lying
acoustical modes. This enhancement is so strong that the top
acoustical mode crosses the single-layer plasmon mode in
GMLS for N = 4 and 5 in the triangular region outside the
electron-hole continuum. We find that in GMLS consisting of
N = 5 (N = 4 and 3) graphene layers only 2 (1) from the 4 (3
and 2) acoustical branches are suppressed as compared with
the single acoustical mode in GMLS for N = 2. The behavior
of multilayer plasmon modes in the short-wavelength limit
remains almost unchanged. In this approximation, independent
of the number of layers, all multilayer plasmon modes for
q 
 kF coagulate around the single-layer plasmon branch
and remain at some distance parallel to the boundary of the
intrachirality sub-band electron-hole continuum.
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FIG. 2. (Color online) The damping function of multilayer
plasmon modes at temperature T = 0.1TF in GMLS consisting of
N = 2,3,4, and 5 graphene monolayers. The curves plotted here
correspond to the plasmon branches presented in Fig. 1 with the same
formatting. All system parameters are taken the same as in Fig. 1.

In Fig. 2 we study the Landau damping of the corresponding
multilayer plasmon modes, shown in Fig. 1. The energy
enhancement, observed for all multilayer plasmon modes,
accompanies an enhancement of their damping in the number
of layers N . It is seen that the damping is strong when the
plasmon mode is far from the boundary of the intrachirality
sub-band electron-hole continuum; hence, the decay of the
in-phase optical mode is always larger than that of the
out-of-phase acoustical modes. This indicates that at finite
temperatures the finite damping of the multilayer plasmon
modes outside the electron-hole continuum is due to a leakage
of the plasmon weight from the inter-sub-band electron-
hole continuum toward low energies and momenta but from
the intra-sub-band continuum, at which boundary, ω = vF q,
the damping function vanishes, 
(q,vF q) = 0. The broaden-
ing of a multilayer plasmon mode shows a strong increase
at some upturn momentum qc, which is the smallest for the
optical mode and the largest for the lowest-energy acoustical
mode, respectively, with the values qc ≈ 0.2kF and 0.8kF in
GMLS consisting of N = 5 layers. In the short-wavelength
limit, q 
 kF , the broadening of multilayer plasmon modes,

i(q), increases approximately linearly in q, independent of
the plasmon mode index i.

In Figs. 3 and 4 we study the finite temperature effect
on the plasmon dispersions and on the broadening of the
respective plasmon modes in GMLS consisting of N = 4
layers. It is seen that with an increase of T the energy of
all multilayer plasmon modes exhibits a significant increase.
This enhancement results in a larger broadening of the
corresponding plasmon dispersions, because the distance of
the respective modes from the boundary of the intra-sub-band
electron-hole continuum increases. The other source of the
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FIG. 3. (Color online) The plasmon dispersions in GMLS consist-
ing of N = 4 graphene monolayers for four different temperatures,
T = TF . All other parameters and notations are the same as in Fig. 1.

broadening enhancement is the increasing leakage of the
plasmon weight with T from the inter-sub-band electron-
hole continuum. The Landau damping increases drastically,
especially for the in-phase optical and for the top out-of-phase
acoustical plasmon modes, so that the upturn momentum for
these modes almost vanishes. It is seen that at temperatures
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FIG. 4. (Color online) The broadening of the plasmon disper-
sions. The different curves here correspond to the multilayer plasmon
branches, with the same formatting and the same parameters as in
Fig. 3.
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FIG. 5. (Color online) The plasmon dispersions at finite temper-
atures T = 0.1TF in GMLS consisting of N = 2,3,4, and 5 graphene
monolayers (shown in bold parallel lines in each panel) for the
interlayer separation d = 20 nm. All other notations and parameters
and notations are the same as in Fig. 1.

T ∼ 0.5TF the multilayer plasmon dispersions exhibit about
15–20% broadening in the triangular energy region outside the
zero-temperature electron-hole continuum.

The plasmon dispersions in GMLS consisting of up to
N = 5 graphene layers are shown in Fig. 5 for a larger
value of the interlayer spacing, d = 20 nm. One can see a
clear convergence of the optical and all acoustical multilayer
plasmon modes to the single-layer plasmon dispersion. This
tendency is so strong that it is hard to distinguish between
the multilayer plasmon modes when they enter into the
inter-sub-band electron-hole continuum.

In Figs. 6 and 7 we show the spectrum of the multilayer
plasmon modes in unbalanced GMLS for new configurations,
which can be of interest for future experiments. Figure 6
shows the plasmon dispersions in GMLS consisting of N =
3 graphene layers for four different values of the inlayer
density n2 in the middle layer graphene sheet. As seen in
the top left panel for vanishing density n2 = 0 and finite
temperatures T = 0.1TF , the lowest acoustic mode is slightly
separated from the boundary of the intra-sub-band electron-
hole continuum. With increasing n2 the separation between
the modes increases along with an overall enhancement of
the energy of all multilayer plasmon modes. In Fig. 7 we
calculate the plasmon dispersions in GMLS consisting of
N = 5 graphene layers. The doping level in two layers of
them is at the Dirac point. It is seen that accordingly only
two of the four acoustical modes are well separated from
the boundary of the intra-sub-band electron-hole continuum
at low temperatures T = 0.1TF . The energy of all multilayer
plasmon modes depends weakly on the position of the pristine
graphene layers. In the configuration shown in the bottom left
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ω ω

ω ω

FIG. 6. (Color online) The plasmon dispersions in an unbalanced
N = 3-layer graphene structure. The different panels correspond
to the in-layer carrier density ni = 0,0.4,0.8,1 × 1012 cm−2 of the
middle layer graphene sheet. All other parameters and notations are
the same as in Fig. 1.

panel, the optical plasmon is slightly suppressed while the
acoustical modes are slightly enhanced in energy as compared
with the plasmons in the other configurations. Notice that in
the presence of neutral graphene sheets in the configurations of
Figs. 6 and 7 there is no gap in the particle-hole continuum,41

so that, along with the effect of finite temperatures, these
layers provide an additional source of damping for all N -layer
plasmon modes in the whole phase space.

IV. SUMMARY

We investigated theoretically the collective plasma oscilla-
tions in N -layer graphene structures where Dirac Fermions
in different spatially separated layers are coupled via the
Coulomb interaction. We calculated the energy dispersions
and Landau damping of the multilayer plasmon excitations as
a function of the total number of layers, the in-layer carrier
density, the interlayer spacing, the lattice temperature, and
the number and positions of undoped layers in such graphene
structures. The multilayer plasmon spectrum consists of one
optical plasmon mode with a square-root dispersion and N − 1
acoustical plasmon modes with linear dispersion. We found
that in the long-wavelength limit and for any number of
graphene layers in GMLS the energies of the optical plasmon
mode and its weight exhibit, respectively, a square-root and

n n

ω

n n

ω

n n

ω

n n

ω

FIG. 7. (Color online) The plasmon dispersions in an unbalanced
N = 5-layer graphene structure with two unroped layers. The
different panels correspond to the different situations of n1 = n3 = 0,
n1 = n4 = 0, n2 = n3 = 0, and n2 = n4 = 0. All other parameters
and notations are the same as in Fig. 1.

a linear enhancement with N . This calculated behavior
is in agreement with the recent experimental findings of
Ref. 58 and provides a detailed understanding of the observed
enhancement effect. The velocity of the upper-lying acoustical
branches of the multilayer plasmon spectrum increases with
the number of graphene layers. The obtained enhancement is
largest for the top outermost acoustical mode, which crosses
at some value of the wave vector, q ∼ kF , the plasmon
energy of an individual graphene sheet. The velocity of the
low-lying acoustical branches exhibits a weak suppression in
graphene structures consisting of N � 3 layers as compared
with the single acoustical mode in double-layer graphene
structures. The presented numerical calculations provide an
understanding of the finite temperature effect on the plasmon
dispersions, their behavior versus the interlayer separation and
the in-layer doping level.
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