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Antiferromagnetism in hexagonal graphene structures: Rings versus dots
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The mean-field Hubbard model is used to investigate the formation of the antiferromagnetic phase in hexagonal
graphene rings with inner zigzag edges. The outer edge of the ring was taken to be either zigzag or armchair, and
we found that both types of structures can have a larger antiferromagnetic interaction as compared with hexagonal
dots. This difference could be partially ascribed to the larger number of zigzag edges per unit area in rings than
in dots. Furthermore, edge states localized on the inner ring edge are found to hybridize differently than the edge
states of dots, which results in important differences in the magnetism of graphene rings and dots. The largest
staggered magnetization is found when the outer edge has a zigzag shape. However, narrow rings with armchair
outer edge are found to have larger staggered magnetization than zigzag hexagons. The edge defects are shown
to have the least effect on magnetization when the outer ring edge is armchair shaped.
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Recent tremendous progress in graphene research is
driven by its remarkable properties, e.g., high crystalline
quality, high electron mobility, lack of a band gap, and
a minimal possible thickness, to name a few.1 The men-
tioned properties are advantageous for various applications
of graphene, such as piezoelectric devices,2 supercapacitors,3

photodetectors,4 and field-effect transistors.5,6 Furthermore,
it has been predicted that graphene structures could exhibit
magnetic ordering which is potentially advantageous for
spintronic applications.7,8 This effect is essentially related to
either the global or local imbalance of sublattice atoms in
bipartite lattices. An imbalance might give rise to zero-energy
states in the electron spectrum. These states are localized near
the zigzag edges or vacancies and, along with the repulsive
electron-electron (e-e) interaction, could eventually lead to
a spin polarization of the ground state of the system.7 Fur-
thermore, the spins on the same sublattice are found to exhibit
ferromagnetic coupling along the graphene edges, whereas the
spins on different sublattices along the graphene edges couple
antiferromagnetically.

In theory, magnetic ordering has been demonstrated
for graphene flakes,9 nanoribbons,10 and vacancies in bulk
graphene.11 On the other hand, experimental reports on
magnetism in graphene structures are rare and conflicting.
They range from the detection of ferromagnetic or antifer-
romagnetic ordering12–14 to measurements of defect-induced
paramagnetism.15,16 Magnetic ordering was even found to be
preserved at room temperature.17,18 The essential cause of
magnetism in graphene is the existence of a peak in the density
of nonbonding edge states near the Fermi energy. However,
due to the high reactivity of these states, magnetism might
be strongly suppressed.19 Several theoretical studies offered
explanations for a diversity of phenomena related to magnetic
ordering and its suppression, which might occur by means
of nonmagnetic edge passivation, edge reconstruction, or
vanishing of spin correlations with increasing temperature.19,20

Hence, in order to experimentally detect magnetic ordering,
graphene samples should be kept under rigorously controlled
conditions. Yet, various applications of this effect have
been proposed. They involve half-metallicity with electrically

controlled spin propagation,8 defect-induced spin filtering,21

and spin logic devices.22,23

In this report we employ the mean-field Hubbard model to
study the formation of local magnetic moments in hexagonal
graphene rings. Our aim is to explore how magnetic ordering is
affected by the ring size and the edge type. In order to identify
different hexagonal rings, we introduce the following notation
which might be visually aiding. We assume that the type of
the inner ring edge is zigzag, and that N unit hexagons are
adjacent to this boundary. The outer ring edge is assumed to
be comprised of either M dimers if it is of armchair type, or
M unit hexagons if it is of zigzag type. Therefore, the ring is
denoted by M : N . As an example, consider the ring shown in
Fig. 1, which is assumed to be formed out of the hexagonal dot
with armchair edge, which contains seven dimers at each side
of the hexagon, as shown in Fig. 1(a). The ring is formed when
the carbon atoms around the center of the dot are removed,
as depicted in Figs. 1(a) and 1(b). Potentially, these exotic
structures could be manufactured via substitutional doping of
boron-nitride nanostructures with carbon.24 Because the edge
of the removed dot has four unit hexagons at each side, the
ring is denoted as 7AC : 4ZG. The distributions of the magnetic
moments in the graphene rings will be compared with the
magnetic moment distributions in the hexagonal graphene
dots. Those dots are assumed to have zigzag edges and are
labeled by NZG, where N has the same meaning as the symbol
M for the rings.

Magnetic ordering of a graphene structure is governed
by Lieb’s theorem.25 It states that the total ground-state
spin of a bipartite lattice with repulsive e-e interaction as
described by the Hubbard model equals half of the difference
of the sublattice sites. For symmetrical structures, this rule is
related to the arrangement of the carbon atoms with respect
to lines of reflection symmetry in the graphene plane: if
there is a symmetry line which does not intersect any of the
carbon atoms, the total ground-state spin is zero; otherwise
there exists a finite magnetic moment. All the hexagonal
rings analyzed here possess such a symmetry, thus their
total magnetization equals zero, unlike triangular rings which
display a ferrimagnetic phase.26 However, Lieb’s theorem does
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FIG. 1. (Color online) (a) The dot (red color) with four atoms
at the zigzag edge removed from the larger dot (black color) which
has seven dimers at the dot edge. (b) The formed ring is labeled by
7AC : 4ZG. (c) The distribution of magnetic moments in the 9AC : NZG

ring shown in a sextant of the ring for N taking the values 3, 4, 5, 9,
10, and 11. The majority spin is labeled by both orientation and color
of a triangle centered at an atomic site. The local magnetic moment
value is proportional to the color intensity.

not dictate the distribution of the local magnetic moments or
the lack of zero-energy states. Furthermore, the number of
zero-energy states in the analyzed ring is an integer multiple
of six, which is a consequence of the C6v symmetry of the ring.
In the 9AC : 10ZG ring, six zero-energy states are found, which
agrees with graph theory, and which is a topological property
related to the nonperfect matching of the pz orbitals.7

The Hubbard Hamiltonian

H = H0 + HI (1)

is employed to compute the distribution of magnetic moments.
H0 is the noninteracting part, which represents the nearest-
neighbor tight-binding Hamiltonian and is given by

H0 = −t
∑

〈i,j〉,σ
c
†
iσ cjσ , (2)

where cjσ and c
†
jσ are the annihilation and creation operators,

respectively, and t denotes the hopping integral. The interact-
ing part HI describes the e-e interaction

HI = U
∑

i

(ni↑〈ni↓〉 + ni↓〈ni↑〉 − 〈ni↑〉〈ni↓〉), (3)

where niσ = c
†
iσ ciσ is the number operator, and U denotes

the on-site Coulomb repulsion energy for each pair of
electrons with the opposite spins orbiting the same atom.27

Equation (3) is obtained within the mean-field approximation,
which assumes that the spin-up (spin-down) electrons interact
with the average density of spin-down (spin-up) electrons on
a particular atomic site.

In our calculations, we take t = 2.7 eV and U = 1.2t .7

We note that there is no consensus on the actual value of
the strength of the Coulomb interaction to be used in the
Hubbard model in graphene. Recent density functional theory

(DFT) calculations came up with a value closer to U = 3.4t .28

However, having in mind that the mean-field approximation
can overestimate the tendency for magnetic order for large
U ,29 we chose the more conservative value of U = 1.2t .
The solution is then obtained by means of a self-consistent
procedure which starts from an initial distribution of the
spins and ends when the maximum change of the electron
density over the atomic sites drops below 10−5. When the
self-consistent spin densities are determined, the magnetic
moment per site mi is computed as

mi = 〈
sz
i

〉 = (〈ni↑〉 − 〈ni↓〉)/2. (4)

For the antiferromagnetic order parameter we take the
staggered magnetization

μz
s = 1

N

∑

i

(−1)i
〈
sz
i

〉
, (5)

where (−1)i symbolizes that we sum up the contributions from
opposite sublattices with opposite signs. This is the appropriate
order parameter for antiferromagnetism when examining spin
polarization occurring in bipartite lattices. The larger μz

s is,
the stronger is the antiferromagnetic phase. In addition to μz

s ,
the shift in the electron and the hole energy spectra which
arises from the magnetic order is quantified as �E = (EHOS +
ELUS)/2, where EHOS and ELUS are the highest-occupied and
lowest-unoccupied states in the ground state at half filling,
respectively. Note that in the nonmagnetic state we have
�E = 0. We will explore how the maximum magnetic
moment mmax varies with the ring width.

The distribution of the local magnetic moments in the
9AC : NZG rings for several values of N is shown in Fig. 1(c).
The symmetry of each hexagonal ring is C6v , whereas the
symmetry of the magnetic moment distribution is IC6v , i.e.,
the magnetic moments alter sign when rotated over π/3 rad.
Therefore, it suffices to display the distribution of magnetic
moments in sectors of π/3 rad, as done in Fig. 1(c), which
combines the sectors of different N . Orientation and color of
triangles denotes the orientation of the magnetic moments, and
the absolute value of mi is depicted by color intensity.

It is evident in Fig. 1(c) that both the appearance of
staggered magnetization and the total magnetic moment
situated on the inner edge of the ring depend on the ring width.
Furthermore, we observe a phase change from nonmagnetic
order for N � 3 to antiferromagnetic order for N � 4, which is
similar to previous calculations for zigzag hexagonal graphene
dots.9,10 No magnetic ordering for zigzag segments shorter
than three unit cells is found because of the close proximity
of the opposite sublattice imbalance on the adjacent sides of
the ring inner edge. When this edge is short, the edge states
on the different sides of the inner ring boundary are subject to
strong hybridization, and therefore their energy is lifted from
the Dirac point. Hence, spontaneous spin polarization does not
occur, which is similar to the case of nanoribbons.30

For N � 4, the spatial spin symmetry is broken due
to the e-e interaction. When the ring width decreases, the
maximum magnetic moment, which is located near the middle
of the zigzag edge segment increases. Furthermore, nonzero
magnetization is built up on the outer ring edge, and it increases
when the ring width decreases. However, as a consequence of
the increasing influence of the outer edge with decreasing ring
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FIG. 2. (Color online) Density of states in the 9AC : NZG rings
for N taking the values 3, 4, 5, 9, 10, and 11 in the nonin-
teracting system (black lines) and the interacting system (purple
lines).

width, the difference between the distributions of the magnetic
moments on the two edges is not large for N = 10 and N = 11.
Similarly, the staggered magnetization increases when the ring
width decreases.

Figure 2 shows how the density of states (DOS) of the
9AC : NZG rings (the cases depicted in Fig. 1) varies with
N . The density of states for the noninteracting (interacting)
case is displayed by the black (purple) lines. In order to
align the interacting and noninteracting spectra for easier
comparison we subtracted �E for each interacting spectrum.
Note that the density of states is spin degenerate, which is in
accordance with Lieb’s theorem. For N = 3, magnetic order is
not present, therefore the energy dependence of the density of
states for the interacting and noninteracting systems coincide
[see Fig. 2(a)]. The interacting and noninteracting electron
case exhibit a small difference in the energy dependence of
the DOS for rings with N = 4 and N = 5, which is shown in
Figs. 2(b) and 2(c). As could be inferred from Fig. 1(c), the
magnetization along the inner ring edge is rather small for these
values of N . For larger N , the discrepancy between the DOSs
for the interacting and noninteracting systems becomes larger,
as demonstrated by Figs. 2(d)–2(f) for N = 9, 10, and 11. In
all these cases, appreciable DOS for the noninteracting system
is found around zero energy. Such a configuration becomes
unstable in the presence of e-e interactions, which results in
the appearance of an interaction gap.

In order to demonstrate how the shape of the outer boundary
affects the distribution of the magnetic moments in the ring,
we show in Fig. 3 the magnetization in the 13ZG : NZG rings.
It is apparent that the shape of the outer edge has a large effect
on the localization of the magnetic moments on this boundary
[compare Figs. 1(c) and 3]. It is clear that in the case of zigzag
outer ring edge, the magnetization propagates much further
into the ring.
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FIG. 3. (Color online) Distribution of magnetic moments in the
13ZG : NZG rings for N ranging from 6 to 11.

Figure 4 displays how μz
s , mmax, and �E vary with the

length of the side of the inner ring edge expressed by the
number N . Along with the rings whose magnetic moment
distributions were shown in Fig. 1(c) and Fig. 3, the case
of a hexagonal graphene dot having a zigzag edge is also
displayed in Fig. 4. Both the staggered magnetization μz

s

and the energy shift �E increase with N , i.e., with the size
of the inner ring, except for the extremely narrow MZG :
NZG rings. Interestingly, the staggered magnetization in the
hexagonal quantum dots does not exceed 0.02, whereas for the
13ZG : NZG ring it can reach almost up to 0.05. The nearly
twofold enlargement of the staggered magnetization could be
accounted for by the double number of zigzag edges in the
MZG : NZG ring as compared to the NZG graphene dot. On
the other hand, most 9AC : NZG rings exhibit larger staggered
magnetization and all show larger maximum magnetic moment
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FIG. 4. (Color online) (a) Staggered magnetization μz
s , (b) max-

imum moment mmax, and (c) energy shift �E as they vary with the
length of the side of the inner ring edge.
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than the hexagonal graphene dot. As a matter of fact, in
hexagonal graphene dots the zero-energy orbitals which are
localized along the adjacent zigzag sides of the edge are
oriented toward each other, whereas inner zigzag edges in rings
face away from each other. Hence, hybridization between the
states of the two edges is larger in the former case than in
the latter case. This is why 9AC : NZG rings turn magnetic
for shorter lengths of zigzag edges than hexagonal dots (four
versus seven, respectively). The decrease of mmax with N for
13ZG : NZG is due to the more effective hybridization between
the quasi-zero-energy states localized on the inner and outer
edges of the ring when the ring width decreases. Hence, the
electron energy shifts from the band of zero-energy states, and
therefore magnetic ordering decays, which is manifested by
a smaller mmax in the 13ZG : 11ZG ring than in the 11ZG dot.
The shapes of the �E(N ) curves shown in Fig. 4(c) resemble
the μz

s(N ) and mmax(N ) curves in Figs. 4(a) and 4(b).
In order to elucidate the difference between magnetic

ordering in rings and dots, one may also analyze how the
local density of states (LDOS) depends on the geometry of the
structure. More specifically, the spatial distribution of the states
close to zero energy determines how the magnetic moments
evolve when the dimensions of the structures varies. In order
to enhance the contribution of the low-energy states, we will
compute the weighted LDOS (WLDOS):11

Wi =
∑

j

e−βE2
j |φji |2. (6)

Here, i indexes the lattice sites, j labels the eigenstates, β is
the damping coefficient chosen as 1/

√
β = 0.1 eV, whereas

φji is the value of the probability amplitude of the j th state
at site i. Such defined WLDOS assumes that the contribution
of the states with |Ej | > 0.1 eV is negligible. The plots of
the WLDOS in Fig. 5(a) illustrate how the edge states form
when the inner 7ZG hexagonal dot is cleaved out of the outer
7AC hexagonal dot. The inner dot is separated from the ring
by severing the bonds one by one between the dot and the
ring. The number of severed bonds between the dot and
the ring is explicitly shown in Fig. 5(a), and the dot edge
is depicted by the blue line. The local sublattice imbalance
accumulates quickly with the number of severed bonds, but
no edge states emerge when the number of cut bonds is less
than four. The edge states, which are depicted by red contours
around the edge, are initially distributed evenly between the
ring and the dot, but they extend more to the ring when the
number of cut bonds increases.

To explore this finding in more detail, we show in Fig. 5(b)
how the total WLDOS (full purple circles), which is the sum
over the atomic sites in the dot (full blue circles) and the ring
(empty red circles), varies with the number of severed bonds.
Also, the DOS at zero energy is shown by the black triangles
in Fig. 5(b). Notice that the variation of the WLDOS has a
similar shape for each side of the ring’s inner edge, and that the
WLDOS displays step-like features. These steps arise because
the imbalance between the two local sublattices, found at the
ring and dot sides of the newly formed edge, are maximized
when the formation of each side of the ring’s inner edge is
completed. The next side of the ring’s inner edge contains the
opposite sublattice imbalance, and therefore the states on this
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FIG. 5. (Color online) (a) Contour plot of WLDOS at several
stages of the carving process forming the 7AC : 7ZG ring and the
7ZG hexagonal dot; the number in the upper-left corner indicates the
number of bonds cut. (b) Summed WLDOS in the ring, the dot, and in
the whole structure as well as the zero-energy density of states versus
the number of bonds cut. (c) Stacked plot of the density of states; red
depicts the densities of the stages displayed in panel (a).

side hybridize with the states on the previous side, which leads
to a decrease of WLDOS.11 Note that after the first edge has
been cut the ring and the dot WLDOSs start deviating from
each other more strongly. This is because the hybridization in
the dot is stronger, as the edge states on adjacent segments
hybridize inward and toward each other. In the ring part the
edge states face away from each other and hybridize radially
outward, hence the hybridization is weaker. This is why the
WLDOS in the former case experiences a decline with the
beginning of each new edge segment, while in the latter case
the WLDOS keeps growing. The gradual increase of WLDOS
for both cases near the end of each segment is related to the
accumulation of the local sublattice imbalances. This pattern
reappears with each new zigzag segment, with the exception
of the last bond, which after being cut results in the separation
of the two structures. By the end, the WLDOS in the ring
is much larger than WLDOS in the dot, which accounts for
the fact that the rings exhibit a larger maximum magnetic
moment and staggered magnetization than the dots. Figure 5(c)
shows a stacked plot of DOSs for each resulting structure.
Plots are stacked from the bottom up, with each subsequent
line corresponding to a structure with one more bond cut.
DOSs for structures depicted in Fig. 5(a) are colored red. It
shows that only features near zero energy evolve in a similar
fashion as the WLDOSs during the separation of the ring and
the dot. This justifies the damping of states higher than 0.1 eV
in calculating the WLDOS, as they are not artifacts of the edge
forming between the ring and the dot.
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FIG. 6. (Color online) (a) Perfect edges (black region) are
randomly perturbed (red lines) to produce a random set of defects.
(b) Final outlook of the deformed ring. (c) Magnetic moments
distributions in 25ZG : 20ZG ring for several values of fdef. The scale
is the same as in Fig. 3. (d) Staggered magnetization of an ensemble
of randomly defected structures as a function of defect ratio for
25ZG : 20ZG ring (black dots), 16AC : 20ZG ring (red dots) ring, and
20ZG hexagonal dot (blue dots). The polynomial fitting curves are
added to guide the eye.

Finally, we examine the influence of the edge deformations
on somewhat larger structures; namely, the 25ZG : 20ZG and
16AC : 20ZG rings and the 20ZG dot. Larger structures are
considered here because they can be deformed in a larger
number of ways than smaller structures analyzed in the rest
of the paper. Defects are induced by randomly deforming
the polygons which outline the perfect structure as shown
in Fig. 6(a). The amplitude of this deformation is itself a
randomly selected number out of a specific range and the

final structure is made up of all atoms that are enclosed by the
deformed outline,31 which is shown in Fig. 6(b). In order to
quantify the amount of defects, the defect ratio fdef is defined
as a fraction of the total number of the defects, which is a sum
of the missing and the surplus sites, and the number of the sites
in the original structure. The magnetic moment distributions
in the 25ZG : 20ZG ring for a few values of fdef are shown in
Fig. 6(c). Also, variation of the staggered magnetization with
the defect fraction for the 16AC : 20ZG and 25ZG : 20ZG rings
and the 20ZG dot is displayed in Fig. 6(d). For the 25ZG : 20ZG

ring and the 20ZG hexagon, μz
s decreases with defect fraction.

This is expected, having in mind that the defects can only
impair the conditions for magnetism in zigzag edges. On the
other hand, for the 16AC : 20ZG ring, small random defects
are more likely to make the larger outer edge magnetic than to
make the smaller inner edge nonmagnetic. This explains the
initial rise in μz

s for fdef up to 0.02.
In conclusion, we predict an antiferromagnetic phase in

hexagonal graphene rings with zigzag inner edge within
the mean-field Hubbard model. The distribution of magnetic
moments is found to strongly depend on the type of outer
edge, and larger antiferromagnetic order is found in rings
than in hexagonal dots. Peculiar hybridization between the
states of adjacent sides of the inner ring edge is found to
lead to an increase of magnetization of rings with respect to
dots. Also, the staggered magnetization and the maximum
magnetic moment are found to be strongly influenced by the
size and the shape of the rings. For wide rings, the maximum
magnetic moment is largest when both the inner and outer
edges are zigzag. But, as a consequence of the hybridization
between the states of the two edges, the maximum magnetic
moment in a ring with armchair outer edge exceeds the one
for the zigzag outer edge when the ring width decreases. The
staggered magnetization in both the hexagonal dots and the
rings with zigzag outer edge is found to decrease faster than
in the rings with armchair outer edge when the number of the
edge defects increases.
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