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Gapless interface states at the junction between two topological insulators
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We consider a junction between two topological insulators and calculate the properties of the interface states
with an effective low-energy Hamiltonian for topological insulators with a single cone on the surface. This system
bears a close resemblance to bilayer graphene, as both result from the hybridization of Dirac cones. We find gapless
interface states not only when the helicity directions of the topological surface states are oppositely oriented, but
they can also exist if they are equally oriented. Furthermore, we find that the existence of the interface states
can be understood from the closing of the bulk gap when the helicity changes orientation. Recently superluminal
tachyonic excitations were also claimed to exist at the interface between topological insulators. However, here
we show that these interface states do not exist.
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I. INTRODUCTION

Topological insulators (TIs)1–12 are a newly discovered
class of materials that have attracted a lot of interest from
the condensed matter community in the last few years.13–18

The strong three-dimensional TI, e.g., Bi2Se3, is insulating in
the bulk with gapless surface states protected by time-reversal
(TR) symmetry as a consequence of band inversion by strong
spin-orbit coupling (SOC). Elastic backscattering of these
states is forbidden due to TR symmetry, and they remain
gapless for any TR invariant perturbation of the system that
does not close the gap. At low energies, the surface states of
Bi2Se3 are given by a single Dirac cone; i.e., they have linear
dispersion and a helical spin texture.9,11

Recently it was shown that there should also exist protected
gapless interface states, based on symmetry arguments, at the
junction between two TIs with opposite helicity direction.19

These interface states are not protected in the same manner
as the surface states of a single TI; instead they are protected
by mirror symmetry. The physics of this system resembles
certain aspects of bilayer graphene, because both result from
the hybridization of Dirac cones.

In this paper, we make a systematic study of the possible
combinations of TIs using a quantitative model for a strong
TI,9,20 and we show the existence of different types of interface
states. This model can be derived from k · p perturbation
theory in which the full Hamiltonian is projected on the
subspace of states that dominate near the � point. We follow
the same approach as a very recent paper21 that claims the
existence of tachyon-like interface states in this system. We
found, however, that this model does not predict tachyon-like
solutions. The reason is technical and due to a wrong imple-
mentation of the model under certain pathological conditions.

The paper is further organized as follows. In Sec. II we
briefly discuss the model that is used to describe the TIs, and
we explain how the interface states were calculated. Next, we
present and discuss our results in Sec. III, and we prove that
the tachyon-like interface states are not physical solutions.

II. MODEL

A. General

The low-energy physics of a bulk strong TI, like
Bi2Se3, is described up to order k2 by the effective

Hamiltonian9,20

H(k,kz) = ε +
(

Mσz + Bkzσx Ak−σx

Ak+σx Mσz − Bkzσx

)
, (1)

where σ are the Pauli matrices for the Bi and Se sites, and

ε(k,kz) = C0 + C1k
2
z + C2k

2,

M(k,kz) = M0 + M1k
2
z + M2k

2,

with k = (kx,ky) and k± = kx ± iky . The Schrödinger equa-
tion is given by H� = E�, where � = (Bi↑,Se↑,Bi↓,Se↓)
gives the amplitude of the spin-orbit coupled pz orbitals that
mainly contribute to the low-energy physics of Bi2Se3. The
band inversion which characterizes the topological phase is
determined by the condition M0M1 < 0 (Ref. 20).

Surface states obtained from this model have linear dis-
persion near the � point with Fermi velocity v = (|A|/h̄)
[1 − (C1/M1)2]1/2 and a helical spin texture.22 The helicity
direction of the spin texture depends on the relative sign of the
parameters A and B, i.e., 〈sx,y〉 ∼ sgn(AB)ky,x (Ref. 20).

B. Junction

We consider a junction at z = 0 between two TIs, TI1
(z < 0) and TI2 (z > 0) (Fig. 1). The junction breaks trans-
lation symmetry in the z direction, and we let kz → −i∂z

to obtain a system of second-order homogeneous differential
equations H(k, − i∂z)� = E� with � = eik·ρφ(z). This is
solved with the ansatz φ(z) ∼ eλz�(E,k), where �(E,k) is
an eigenvector of the Hamiltonian. We obtain a system of
algebraic equations that has a nonzero solution if |H(k, −
iλ) − E| = 0. Details on the solution method are given in
the Appendix. Solving for λ yields four doubly degenerate
λα(E,k) (α = 1, . . . ,4) in general, each corresponding to two
eigenvectors �s,α (s = 1,2) [Eq. (A2)]. The total solution is
then given by the linear combination

φ(z) =
∑

s

∑
α

Cs,αeλαz�s,α, (2)

where the coefficients Cs,α(E,k) are found from the boundary
conditions.

We want to study states localized at the junction, and
therefore we consider only the two λ(m) with Re λ(1) > 0 for
TI1 and Re λ(2) < 0 for TI2, to construct the wave function (2)
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FIG. 1. (Color online) Junction between TI1 and TI2 with
opposite helicity direction. The spin of the surface Dirac cone lies in
the plane, perpendicular to the direction of propagation (given here
by the y axis), oriented along the positive (green) and negative (red)
x axis for TI1 and TI2 respectively.

[see Eq. (A1)]. Here m labels TI1 and TI2, respectively. The
remaining boundary conditions are given by the continuity of
the wave function and the current at the junction23

φ(1)(0) = φ(2)(0),
(3)

δH(1)

δkz

∣∣∣∣
kz=−i∂z

φ(1)

∣∣∣∣
z=0

= δH(2)

δkz

∣∣∣∣
kz=−i∂z

φ(2)

∣∣∣∣
z=0

.

The nonzero solutions C(m)
s,α (E,k) �= 0 of this system of homo-

geneous equations define the dispersion and wave functions
of the interface states. We numerically solved this system on
a (E,k) grid by means of the condition number and singular
value decomposition of the coefficient matrix.

III. RESULTS

The parameters of the model (1) are taken from Ref. 9 and
were obtained from ab initio calculations of Bi2Se3. We want
to study the effect of the helicity direction on the interface
states, and therefore we focus only on the parameters A(2)

and B(2), which determine the helicity direction of the surface
states of TI2. We find gapless interface states if the helicity
direction of the surface states of the TIs is equally as well
as oppositely oriented. Specifically, we find solutions if the
sign of the parameters A or B is opposite for the TIs (cases 1
and 2), corresponding to TIs with opposite helicity, and if the
sign of both parameters is opposite (case 3), corresponding to
TIs with equal helicity. We find no solutions for the other case
in which both TIs have equal helicity, i.e., if both parameters
have the same sign. To simplify the calculation and because
the Hamiltonian (1) has full rotation symmetry about the
z axis, we take the wave vector along the x direction.

A. Case 1

First we consider the case where B(2)=B(1) and A(1)A(2) < 0.
This corresponds with TIs that have surface states with
opposite helicity direction (Fig. 1), and the magnitude of
A(1,2) determines the Fermi velocity of the surface states.
In Fig. 2(a) the dispersion of the interface states is shown
for three different values of A(2). The interface states have
linear dispersion (in the radial direction) around k �= 0 which
results from the hybridization of the Dirac cones from the
separated TIs, similar to AA stacked bilayer graphene.24 The
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FIG. 2. (Color online) (a) Dispersion of the interface states
for B (2) = B (1), and A(2) = −A(1) (1), A(2) = −2A(1) (2) and
A(2) = −10A(1) (3). (b) Decay length of the interface states for the
two bands from (a) with A(2) = −A(1). (c) Density of the states of
band 1b from (a) marked with a cross, near the crossing point (solid),
and closer to the bulk region (dashed).

cones intersect closer to the center if their Fermi velocity is
smaller. From the energy scale in Fig. 2(a) one can see that the
conduction or valence band of the cone is pushed into the bulk
region of the band structure, which has a band gap around
0.3 eV.9,11 Correspondingly, as the bands approach k = 0,
the decay length ≡ max(1/|Reλα|) diverges exponentially, as
shown in Fig. 2(b).

The total density near the junction is shown in Fig. 2(c) for
a state close to the crossing point and a state close to the bulk
region. Both states are marked with a cross in Fig. 2(a). We see
that the character of the individual surface states is completely
lost, and the interface states are spread over the entire junction.

B. Case 2

Next we consider the case where B(1)B(2) < 0 and
A(1)A(2) > 0. Again this corresponds with TIs that have
surface states with opposite helicity direction (Fig. 1), and
the magnitude of A(1,2) determines the Fermi velocity of the
surface states. In Fig. 3 the dispersion of the interface states
is shown for B(2) = −B(1) and A(2) = 10A(1). Unlike case 1,
there is little interaction between the surfaces, and the cones
lie on top of each other.

The density is also shown for two states in Fig. 3, one on
each cone. We see that the states on each cone are not localized
at the junction, but instead they are localized inside one of the
TIs, as we would expect if there is little interaction, and the
individual surface states keep most of their original character.
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FIG. 3. (Color online) Dispersion of the interface states between
TIs for B (2) = −B (1) and A(2) = 10A(1). The density (arb. units) is
shown on the right for the two states that are marked with a cross on
the dispersion.

TI2 has the largest Fermi velocity; correspondingly the states
on the steepest cone are localized in TI2. The Fermi velocity
of the cones in the interface spectrum is two times as large
as the original cone of the separated TI for TI1 and about
0.8 times smaller for TI2, and thus the cones are attracted to
each other.

C. Case 3

Finally we consider the case where B(1)B(2) < 0 and
A(1)A(2) < 0. Unlike the previous two cases, this corresponds
with TIs that have surface states with equal helicity direction.
The dispersion of the interface states is shown in Fig. 4
for B(2) = −B(1) and A(2) = −10A(1). We see that we get a
combination of the previous two cases, a linear spectrum near
the center and a crossing away from the center. The density is
also shown for two states in Fig. 4, localized on TI1, one near
the center and one near the crossing point. Near the center
we have the same behavior as in case 2, and closer to the
crossing point the interaction between the surfaces is stronger
as indicated by the shift of the density towards the junction.
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FIG. 4. (Color online) Dispersion of the interface states between
TIs for B (2) = −B (1) and A(2) = −10A(1). The density (arb. units) is
shown on the right for the two states that are marked with a cross on
the dispersion.

The states on the steep cone do not differ much from those of
the steep cone of Fig. 3 and are localized within TI2.

D. Discussion

If the helicity direction of the TIs is opposite, the existence
of the gapless interface states can be understood from
scattering of surface states at the junction between the two
TIs, as shown in Refs. 19 and 25. At normal incidence, the
incoming state on the surface of TI1 cannot scatter backwards
because of spin conservation. This is similar to graphene,
where pseudospin conservation results in Klein tunneling
through potential barriers at normal incidence.26 However,
when TI2 has opposite helicity, the incoming state cannot go
forward because there are no states in TI2 that conserve both
spin and momentum. This paradox is solved by the existence of
gapless interface states between the TIs. At normal incidence
the incoming state has to go into the interface. Consequently
these states should exist for kx = 0 or ky = 0.

The origin of the surface states in TIs can be understood
from the closure of the bulk band gap if the Hamiltonian is
transformed continuously from a trivial insulator to a TI. In
the same way, we can understand the interface states at the
junction between two TIs. We observe that the gap of the
bulk band structure of the Hamiltonian (1) closes at k �= 0
if the parameter A changes sign, and it closes at k = 0 if
the parameter B changes sign, which could be an indication
of a topological phase transition. The origin of the interface
states within the model can then also be understood from this
closing of the bulk gap when A = 0 at k �= 0 for case 1, and
when B = 0 at k = 0 for case 2. When both parameters A

and B change sign as in case 3, we end up with two TIs
with equal helicity direction. Therefore, at first sight it might
be surprising that interface states appear. However, from the
previous discussion it is clear that the bulk gap closes at two
different k values when both A and B change sign, which
explains why the resulting spectrum in case 3 (Fig. 4) is a
combination of the spectra of case 1 [Fig. 2(a)] and case 2
(Fig. 3). This is illustrated with a schematic phase diagram in
Fig. 5, where we show the four different sign combinations of
A and B, and the (k,kz) points at which the gap closes when
the helicity changes orientation.

A < 0 A = 0 A > 0

B
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0
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=
0
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>

0
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−M0/M2, 0)
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−
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0
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)

FIG. 5. Schematic phase diagram as function of A and B. When
either of the parameters changes sign, the gap closes at (k,kz) shown
and the helicity changes orientation. Crossing from region 0 to region
1–3 corresponds with case 1–3.
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Because of the invariance of the Hamiltonian (1) under any
rotation about the z axis, we find gapless interface states along
any k direction. If we take into account terms up to order k3,
the full rotation symmetry is relaxed to threefold C3 rotation
symmetry of the Bi2Se3 crystal,20 and we expect a gap to open
in the interface spectrum along kx �= 0 or ky �= 0 directions,
giving a total of six Dirac cones over the entire Brillouin zone.
However, the solution method becomes unpractical in this case,
because the equation for λ (A1) contains odd powers, and we
need to find the roots of a depressed quartic equation.

Now this raises the question if materials can exist for
which the parameters A and B change sign with respect to
their Bi2Se3 values. In Ref. 20 it is argued that the sign of
A is determined by the sign of the atomic SOC, while the
sign of B is independent of the atomic SOC. However, the
atomic SOC parameter, given by the diagonal matrix element
of ĤSO = (2m2

ec
2r)−1(∂U/∂r)L · S, does not change sign for

Bi2Se3-like TIs because the potential is always attractive for
atoms.20 Therefore, the helicity direction is always the same
within the Bi2Se3 family of TIs. However, the model (1)
is valid for a general TI, and therefore we believe that the
interface between TIs with opposite helicity is possible in
principle, as was also mentioned in Ref. 19. Furthermore, there
are other mechanisms besides SOC which can give rise to a
band inversion. For example, strained bulk HgTe is a 3D TI27

in which the band inversion is caused by other relativistic
corrections.28 Also in type-II InAs/GaSb heterostructures, one
can achieve a band inversion from confinement.29

E. Tachyonlike interface states

We found no signature of tachyons in this system as
claimed in Ref. 21. The reason is the following. If the λ

used to construct the general solution (2) become four times
degenerate, the solution is no longer valid because it contains
the same contribution twice. In this case, the matrix of the
homogeneous system, defined by the boundary conditions (3),
is always singular, and one seemingly finds solutions. The extra
degeneracy occurs at (E,k) points where the equation in λ2 has
a repeated root [Eq. (A1)]. This happens when the discriminant
vanishes, which allowed us to obtain an expression for the
“dispersion,”

Et (k) =
[
C0 − C1

M1

(
M0 + B2

2M1

)]
+

(
C2 − M2

M1
C1

)
k2

± 1

2M2
1

√(
C2

1 − M2
1

)
f (k), (4)

with

f (k) = B4 + 4B2M0M1 + 4M1(B2M2 − A2M1)k2.

When the argument of the square root becomes negative,
the “group velocity” diverges and Et becomes complex. This
happens at f (kt ) = 0, which gives the tachyonic point21

kt = |B|
2

√
B2 + 4M0M1

M1(A2M1 − B2M2)
. (5)

In Fig. 6 we show the dispersion for the case which was also
considered in Ref. 21, A(2) = −A(1) and B(2) = 3.0 eVÅ. We
see that Eq. (4) exactly fits the tachyon-like “dispersions”
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FIG. 6. (Color online) Dispersion of the interface states for A(2) =
−A(1) and B (2) = 3.0 eVÅ, where we have included the tachyonlike
solutions; this corresponds to Fig. 3(a) of Ref. 21. Equation (4) is
plotted for TI1 (red) and TI2 (green) together with the numerical
results (dots). From Eq. (5) we find k

(1)
t ≈ 0.853 nm−1 and k

(2)
t ≈

0.381 nm−1.

obtained with a numerical calculation that does not take the
degeneracy into account. In this case we get two tachyon-like
“dispersions” because the degeneracy occurs for λ(1) and λ(2)

for this parameter set. In general, the degeneracy happens on
a real (E,k) grid if kt is real. The same problem occurs if we
consider a vacuum interface, because the degeneracy of λ is
independent of the boundary conditions. In this case, one can
analytically show that the tachyonic solutions are not physical.

The correct general solution at the degeneracy is given by
Eq. (A6) in the Appendix. Now we find solutions only at
the points of intersection between the unphysical tachyon-like
“dispersion” and physical solutions.

IV. CONCLUSION

In conclusion, we have studied interface states at the
junction between two TIs with equally and oppositely oriented
helicity direction. The origin of the gapless interface states
can be understood from the closing of the bulk gap in the
transition from one orientation of helicity to the opposite
orientation at different wave vectors. Even if we relax the full
rotation symmetry of the model, there should still be gapless
states at kx = 0 or ky = 0 if we wish to avoid the scattering
paradox of surface states at the junction between two TIs with
opposite helicity. This topological phase transition has been
characterized by a topological invariant produced by the mirror
symmetry of the system in Ref. 19.

Also, we found that the tachyon-like dispersion presented
in Ref. 21 does not correspond to physical solutions. Rather, it
is a consequence of implementing the wrong general solution
at points on the (E,k) grid where the secular equation (A1)
has four repeated roots. This degeneracy occurs independent
of boundary conditions, and the same complication arises for
a vacuum interface where one can analytically show that these
solutions are unphysical. From the comparison of Eq. (4) with
the numerical results in Fig. 6, and the fact that the tachyonic
solutions vanish if we use the correct general solution at the
degeneracy, we conclude that this system does not show any
signature of tachyons.
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Note added in proof. Recently, another paper appeared
on the same subject, where the effect of symmetry breaking
perturbations on the interface states is studied.30
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APPENDIX: GENERAL SOLUTION

After the substitution kz → −i∂z, the Schrödinger equation
(H − E)φ = 0 is given by a coupled system of homogeneous
second-order differential equations that is solved with the
ansatz φ(z) ∼ eλz�(E,k), where �(E,k) is an eigenvector of
the Hamiltonian. This yields a system of algebraic equations
that has a nonzero solution if |H(k,−iλ) − E| = 0, which we
can write as the square of a biquadratic equation in λ,

D1D2λ
4 + [B2 + D1(E − L2) + D2(E − L1)]λ2

+ (E − L1)(E − L2) − A2k2 = 0, (A1)

with

L1,2 = C0 ± M0 + (C2 ± M2) k2,

D1,2 = C1 ± M1.

This gives four doubly degenerate λα(E,k) in general. The
eigenspace of λα is spanned by two eigenvectors �s,α(E,k),
which can be chosen as22

�1,α =

⎛
⎜⎝

−iBλα

E − L1 + D1λ
2
α

Ak+
0

⎞
⎟⎠, �2,α =

⎛
⎜⎝

0
Ak−

E − L2 + D2λ
2
α

iBλα

⎞
⎟⎠.

(A2)

The general solution is then given by Eq. (2). However, if the λ

are further degenerate, i.e., when Eq. (A1) has a repeated root,
there are only two distinct λ that are both four times degenerate.
In the last case, there are only two linear independent solutions
for each λ, given by eλz�1 and eλz�2. In order to find two
more linear independent solutions, we first consider a general
system of n homogeneous second-order ordinary differential
equations:

φ′′ = Qφ′ + Pφ, (A3)

where P and Q are constant n × n matrices. If we plug φ(z) =
eλzη in Eq. (A3), we find

(A + λB − λ2I )η = 0, (A4)

which has a nonzero solution η �= 0 if and only if det(A +
λB − λ2I ) = 0. In general, the solution of this equation is
given by the roots of a polynomial of order 2n in λ. Now
consider the case where there is a repeated root. If there are
two linearly independent η corresponding to the repeated root,
there is no problem. When this is not the case, we need to
look for another linear independent solution. If we try φ(z) =
zeλzη + eλzρ, and equate terms of equal power in z, we find
Eq. (A4) again, and additionally we have

(A + λB − λ2I )ρ = (2λI − B)η. (A5)

If we take the partial derivative of Eq. (A4) with respect to λ,
and compare the result to Eq. (A5), we find ρ = ∂λη. If we use
this result, we obtain the general solution when the λ are four
times degenerate:

φ(z) =
∑

s,β=1,2

eλβz[Cs,β�s,β + Cs,β+2(z + ∂λβ
)�s,β]. (A6)
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