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Tunable diffusion of magnetic particles in a quasi-one-dimensional channel
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The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is
studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an
in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of

the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned
by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive
regime is independent of the orientation of the external field.
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I. INTRODUCTION

The study of magnetic colloids is of great importance
from both a theoretical and an experimental point of view.
Recently there has been an increased interest in the study
of the structural and the dynamical properties of magnetic
confined (in particular on the meso- and nanoscale) systems
due to the possibility of biomedical [1-3] and engineering
applications [4]. Examples of these magnetic systems are
ferrofluid nanofilms [5-7] and magnetorheological (MR)
fluids [8,9]. For instance, the translational dynamics of a
mesoscopic 3D system of permanent magnetic dipoles was
studied in Ref. [10], and it was found that the system displays
signatures of subdiffusive motion due to the strong suppression
of orientational fluctuations of the magnetic dipoles by the
presence of an homogenous external magnetic field. The
formation of chains of magnetic dipoles (coagulation effect
[11-13]) is also relevant for the dynamical properties of
these magnetic systems and may lead to different regimes of
diffusion. Magnetic clusters of dipolar particles were recently
investigated experimentally [14-16] and they may serve,
e.g., as drug delivery mechanisms in biological applications.
The structural properties of magnetic colloids were recently
analyzed experimentally [17] and by means of molecular dy-
namics simulations [18], where novel field-induced structural
transitions were observed in confined ferrofluid nanofilms.

In comparison with infinite 3D or 2D systems, confined
systems exhibit a particular behavior due to the competition
between the confining potential and the interparticle inter-
action potential. For instance, for a 2D system of repulsive
particles confined in a circular parabolic potential, previous
studies clearly identified the effect of the boundaries on the
structural and dynamical properties of the system, as well
as on the melting [19-24]. Another interesting possibility
of confined systems is realized when the 2D system is
subjected to an external confining potential (e.g., parabolic)
in one direction. The system is called quasi-one-dimensional
(q1D). Such a q1D system of repulsive interacting particles
self-organize in a chainlike structure that was recently studied
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experimentally [25-28] and through analytical and numerical
calculations [29-33].

Diffusion is strongly modified in confined systems and
may lead to single-file diffusion (SFD) [34-42], which is
directly related to the geometrical constrains imposed by an
external confining potential. Furthermore, q1D systems can
be used as models for the study of collective phenomena
in low-dimensional systems, e.g., vortex matter in type II
superconductors [43,44], colloidal particles [45,46], and dusty
plasmas. In addition, the mechanisms of ion transport in
narrow channels [47] and DNA manipulation using magnetic
particles [48,49] can be studied by modeling q1D systems.

In the present paper we investigate numerically the proper-
ties of a system of ferromagnetic dipolar particles confined in a
one-dimensional parabolic trap (which models a q1D channel)
coupled to a thermal bath. The orientation and strength of an
in-plane external magnetic field B are now control parameters
that are able to influence the dynamics of the particles. For
diluted systems, particles are arranged in a single chain
structure in the center of the parabolic channel. When B is
perpendicular to the channel, the magnetic particles interact
through a pure repulsive potential. For any other orientation
of B, an extra attractive term is present in the particle-
particle interaction potential. The latter can be dominantly
attractive or repulsive, depending on the orientation of the
external magnetic field. In our numerical analysis, we perform
extensive Brownian dynamics (BD) simulations and calculate
the mean-square displacement (MSD) W (¢) of the particles
for different parameters, which characterizes the system. For
the case of normal diffusion regime (Einstein or Fickian
diffusion), one has W(¢) = Dgt*, where Dy is the “free
particle” diffusion coefficient, « is the so-called exponent of
diffusion (in this case, « = 1.0), and ¢ is time. For values
of o # 1.0, diffusion is said to be anomalous. For instance,
in the case of SFD, W(t) = 2Ft* (with o = 0.5), where F
is the single-file diffusion mobility factor. We show that the
application of an in-plane homogeneous external magnetic
field leads to different regimes of diffusion depending on the
orientation and strength of the field.

We emphasize here that our analysis of the exponent of
diffusion () is restricted to the intermediate regime (ITR),
which is found before the onset of the true “long-time” limit
(i.e., t — 00) [50]. See also the discussion in Ref. [42] and
references therein. Note that in the limit t — oo, the MSD
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W (t) o t%3 for any pairwise interaction potential if the system
fulfills the SF (single-file) condition, i.e., no particle crossings
are allowed. The reason is that the clustering of particles,
observed in our work due to the attractive interaction, can be
considered as a system of bigger particles with a lower effective
particle density and a smaller diffusion constant. These clusters
should have the MSD W () o %3 but now at a much larger
time scale, which we do not consider in this work.

This paper is organized as follows. In Sec. II we introduce
the model system and the numerical methods used in our study,
including the approximations and limitations of our model. In
Sec. III we discuss the different interaction regimes of our
system. The dynamics in the strong magnetic field case is
analyzed in Sec. IV. The weak magnetic field case is discussed
in Sec. V and in Sec. VI, we further investigate the strength
of the magnetic field on diffusion. Finally, we present the
conclusions of our work in Sec. VII.

II. MODEL AND NUMERICAL METHODS
A. Model system

Our system consists of NV interacting dipolar ferromagnetic
particles confined in a quasi-one-dimensional (q1D) channel
and which is in contact with a thermal bath at absolute
temperature 7'. The pair interaction potential Vi, (7) is given
by the sum of the dipole-dipole term Vi, (r) and the short-range
repulsion V(7), such as

12
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where r;; is the interparticle separation vector between a pair
of particles i and j, u; is the permanent magnetic moment
of particle i, o is the diameter of each particle, and ¢ is an
energy parameter which characterizes the short-range repul-
sion between the particles and prevent them from coalescing
in a single point [51]. We assume identical particles, i.e.,
[mi| = |pj| = p. The q1D channel is modeled by a parabolic
confinement potential defined as Veonr = maw?y? /2, where m,
w, and y; are the mass of each particle, the confinement
strength (frequency) and the y coordinate of the ith particle,
respectively. We also apply an in-plane homogenous external
magnetic field B, which forms an angle ¢ with respect to the
x axis. The interaction torque 7; between particles is given by
T, =] XY, i B?}‘ (see Appendix). The coupling between
the magnetic moment of each particle and the external field
is given by ¥ = pu; x B. In Fig. 1, we show a schematic
representation of the system under study together with the
relevant parameters.

We assume that the motion of the particles is overdamped,
which is typical for colloids moving in a liquid. The equations
of motion for the ith magnetic dipolar particle are

yE ==Y [ViVaip + Vi)l = Vi Veont + &1, (2)
j>i
yo?02 =1, + 18 + 0k, (3)
where r; = x;X 4+ y;¥ is the position vector of particle i

and 6; is the angle between the vector u; and the x axis.
Furthermore, y is the viscosity of the medium and &;(z) is
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FIG. 1. (Color online) Schematic representation of the system.
The particles have diameter o and dipole moment p;, which forms
an angle 6; with respect to the x axis. An in-plane external magnetic
field B is applied with magnitude B and ¢ is the angle between B and
the x axis.

a stochastic white noise with the properties: (i) (&;(¢)) =0
and (i) (& (1)&n(t")) = 2ykpT8;j6,mn8(t —t'), where m,n
corresponds to the components (x,y,0), kg is the Boltzmann
constant, and T is the absolute temperature of the system.
Note that the first and the second terms on the right-hand
side of Eq. (3) are related to the potential energy of a dipole
due to the magnetic field generated by all the other dipoles,

U =—p; -y B, @
Jj>i
and the potential energy of a dipole in the presence of the
external magnetic field,

U™ =—p;-B, )

respectively. Therefore, for the case of a strong magnetic field
(in the following we consider B = 100 as an example), the
effect of the interaction torque t; can be neglected since the
dipoles will tend to align completely to the external field, i.e.,
U™ + U™t~ U (see main panel of Fig. 2). On the other
hand, if the external magnetic field is weak (for example,
B = 2.0), the interaction torque 7; cannot be neglected since,
for this case, we have U™ ~ U®' (see inset of Fig. 2).
Nevertheless, in all our simulations we keep both terms, i.e.,
7;and 5.

Finally, our model system does not take into account
hydrodynamic interaction (HI) effects (particle-fluid and
particle-wall interactions), which usually have only a small
effect on the qualitative behavior of the diffusion properties,
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FIG. 2. (Color online) Potential energy, as defined by Egs. (4)
and (5), per particle as a function of time ¢ for B = 100, u = 2.0. In
the inset we show the same but for B = 2. In both cases, the number
of particles in the computational unit cell was N = 300 and all the
other parameters are given in Sec. II B.

012307-2



TUNABLE DIFFUSION OF MAGNETIC PARTICLESIN A . ..

as recently demonstrated by Eudn-Diaz ef al. [52]. A similar
approach was adopted for a dilute dipolar colloidal suspension
in Refs. [53,54], where, similarly to our work, the interaction
potential between particles had both a repulsive and an
attractive term. The HI effects can be neglected in our case
because we are in the dilute regime, i.e., the low-density
case. Note that the particles are almost completely uniformly
distributed along the x direction, i.e., the system forms a
single-chain configuration. Furthermore, HI effects should
play an important role in diffusion (and, in general, in
dynamical properties) for the case of highly concentrated
colloidal suspensions [55], a situation that is not considered in
our work.

B. Numerical methods

Before we integrate numerically Eqs. (2) and (3), we
introduce the unitof time as ty = oy /e, where & = kg Ty isthe
unit of energy (7 is the unit of temperature) and o is the unit
of length. Moreover, By = /¢/03 is the unit of magnetic field
and (o = v &o3 is the unit of magnetic moment, wy = (to)~!
and the dimensionless parameter w* = m(wo)?/2¢ controls
the strength of the parabolic confinement potential in the y
direction. These scaling turn all quantities into dimensionless
(asterisk) form.

Integrating the dimensionless overdamped equations of
motion, we obtain the following Ermak-type algorithm [56]
for updating the position (r}) and angle (6*) of particle i during
the simulation time step At*,

rf(Ar*) = 1}(0) + AT + Ar*(0*) g + V2T *A1*E],
0F(AL*) = 07(0) + At* T + At* B + V2T*Ar*gr,  (6)

where f; = =37, VI[Vi, + Vil g = —ViHOH?, =
[} x Zj>i B;’f}"t| (see Appendix), and 7 = |u} x B*|. Fur-

thermore, Vi and Vg are given by

e Mmy 30T ) -
AR 5,13 ’
Ve =4/ (8)

From this point onward we will abandon the asterisk
notation and all physical quantities are dimensionless, unless
stated otherwise. In our simulations, we use the following
parameters: At = 1.0 x 1075, @ = 10.0, ©x =2.0, and T =
1.0. Note that B and T can be related by the dimensionless
parameter n = |U%|/kgT, which is defined as the ratio
between the coupling energy of a dipole particle with the
effective magnetic field (U = U™ + U®) and the thermal
energy (kpT). We also use a simulation box of length (in the
x direction) L, = 375.0 and linear density p = N/L, = 0.8.
We choose this value of L, in order to cutoff the interaction
potential for distances larger than r =r. = L, /2 ~ 187.0,
at which the interaction energy between a pair of particles
is approximately Vgip(r)|,, ~ 1.0 x 107°. In the x direction,
we apply periodic boundary conditions and in the transverse
direction, the system is confined by the parabolic trap, which
is controlled by the parameter w. Note that in this work we set
a value of w which is large enough to prevent particles from
bypassing each other, as we demonstrated in a previous study
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[42]. This forces the system into a strict 1D chain of particles
in the x direction. The initial configuration of the particles
is chosen randomly and the system is equilibrated during
(1.0 — 5.0) x 10° simulation time steps. Other parameters
which characterize the system are the magnitude of the external
magnetic field (B) and the angle ¢ between B and the x axis.
Furthermore, the stochastic white noise &;(¢) is simulated using
the Box-Miiller transformation technique [57] and in all the
results presented in this work, the error bars in the plots are
smaller than the symbol size.

III. INTERACTION POTENTIAL
BETWEEN TWO DIPOLES

Before we study the complete system (i.e., the model
described in Sec. II), let us first analyze the behavior of
the dipole-dipole interaction potential Vg,(r) between two
particles as a function of ¢ (cf. Fig. 1), assuming that both
dipoles are perfectly oriented in the direction of the external
field. In this case, the interaction potential may be written as

2
Vaip(Ir]) = '|’r‘—|'3[1 —3cos? (¢ — 6)] +4r[72, (9

where 6, (cf. Fig. 1) is the angle formed between the vector
r and the x axis. We assume the simplest case, where
6, = 0°, which means that particles are forming a perfect
one-dimensional chain along the x direction. The dependence
of Vgip [Eq. (9)] on the distance r between two particles is
presented in Fig. 3 for different values of ¢. We found that
for ¢ Z 54°, the interaction potential is dominantly repulsive.
On the other hand, for ¢ § 54°, the interaction potential has a
Lennard-Jones form (e.g., ¢ = 0° in Fig. 3). For small values
of r, the repulsive term 4|r|~'? is dominant. For intermediate
values of r (1.0 < r < 1.5), the particle can be trapped in
the potential well due to the presence of the attractive part in
the interaction potential. For larger distances (r — 00), the
interaction vanishes.

IV. INFLUENCE OF A STRONG EXTERNAL
MAGNETIC FIELD ON DIFFUSION

The influence of a strong homogeneous external magnetic
field on the diffusive properties of the model system described
in Sec. II will now be investigated. The external field B with
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FIG. 3. (Color online) Dipole-dipole interaction potential Vi, (r)
[Eq. (9)] as a function of the distance r between two dipoles and for
different values of ¢.
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FIG. 4. (Color online) Log-log plot of the mean-square displace-
ment (solid black curves) W (t) as a function of the time ¢ for B = 100
and (a) ¢ = 90°,(b)¢ = 70°,(c) ¢ = 50°,and (d) ¢ = 0°. The dashed
orange lines are a guide to the eye and the crossover time #, for each
case is indicated by the vertical arrow.

magnitude B = 100 (which is a typical strong field value used
in experiments, see e.g., Ref. [58]) forms an angle ¢ with
respect to the x axis (cf. Fig. ). Note that since we set 7 = 1.0,
the parameter n =~ 200 >> 1, which means thermal fluctuations
are weak. We now investigate how diffusion depends on ¢.

We will study the diffusive properties of the system through
the analysis of the mean-square displacement W (¢) along the
x direction, defined as

N
W(r)=<% Z[x,-<r+8r>—x,~(r>]2> , (10)

i=1

where N is the number of particles (we use a typical value
of N = 300-900 particles), T is an arbitrary time origin [59],
8t is the time interval between measurements, and (-), is an
average over different time origins during the simulation [60].

A. Region (I): 55° < ¢ < 90°

First, we consider the external magnetic field perpendicular
to the parabolic confinement channel, i.e., ¢ = 90°. In this
case, the interaction is purely repulsive [i.e., Vaip(r) o< (1/ r)?]
and the mean-square displacement W(r) [Fig. 4(a)] of the
system exhibits a subdiffusive regime [single-file diffusion
(SFD)], with W(t) =2F,t* for time scales larger than
the short-time normal diffusion regime (STND), which is
characterized by W(t) = Dot [61]. The crossover time ¢,
between these two distinct regimes of diffusion can be
estimated [59] as the time where the curves Dot and 2F, %>
intersect,

0.5 2Fa :
Dot. = 2F,(t.)"° = t. ~ . (11
Dy
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The mean-square displacements for ¢ = 90° and ¢ = 70°
are presented in Figs. 4(a) and 4(b), respectively. We found that
for 55° < ¢ < 90°, i.e., when the dipole-dipole interaction is
purely repulsive (cf. Fig. 3), W () has the following behavior:

Dot fort < t.

12
2F, 103 (12)

W) = { )

fort > t.
where a straightforward calculation using Eq. (11) gives 7, ~
7.58 x 1073 (F, 2 4.79 x 107 and Dy ~ 0.110 x 107%). In
this region (I), the crossover time #. and the SFD mobility F,
are independent of the value of ¢.

B. Region (I): 0° < ¢ < 55°

For the case of 0° < ¢ < 55°, the attractive term present in
the dipole-dipole interaction potential becomes more relevant
with decreasing ¢. As a consequence, we expect that the
diffusion of the dipoles to be affected by the orientation of B.
We found that for this region (I), the system exhibits the STND
followed by a subdiffusive regime, with W(t) = 2F,(¢)t%°,
where now ¢, and Fj, depends on the angle ¢ and

Dot fort < t.(¢)

2F, ()% fort > t.(¢p)’ (13)

W(t) = {

with 7.(¢) ~ (2F,(¢)/Dy)*>. The mean-square displacement
for ¢ = 50° and ¢ = 0° is presented in Figs. 4(c) and 4(d),
respectively.

In Figs. 5(a) and 5(b) we show the mobility Fj(¢) in region
(IT) and the crossover time ¢, as a function of ¢, respectively.
Note that both F, and 7. decrease with decreasing ¢ in
region (II). On the other hand, as stated above, the crossover
time 7. is constant in region (I).

The decrease of 7. and Fj, in region (II), with decreasing ¢
can be explained by the decrease of the minimum interparticle
distance between neighbor particles [cf. Fig. 6(a)]. When the
interaction potential is dominated by the repulsive part of
the potential [i.e., region (I)], the particles are distributed
homogenously along the unconfined direction [Fig. 7(a)],
i.e., the minimum interparticle distance between neighbors is
approximately constant. In region (II), the attractive term in the
interaction potential becomes more relevant, and the system
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FIG. 5. (a) Mobility F, in region (II) as a function of ¢ and (b)
crossover time #., between the STND regime and the subdiffusive
regime as a function of ¢. The solid lines are a guide to the eye. The
dashed vertical line in (b) divides regions with (II) and without (I) an
attractive part in the interparticle interaction potential.
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FIG. 6. (a) Minimum interparticle distance d between neighbor-
ing particles for B = 100 and 7" = 1.0 as a function of the orientation
¢ of the external field. (b) Exponent of diffusion («) as a function of
the orientation ¢ of the external magnetic field. Note that d decreases
with decreasing ¢ in the region 0° < ¢ < 55°, which is the same
region where we found the increase of the diffusion mechanism [cf.
panel (b)]. The solid lines are a guide to the eye.

starts to form clusters of chains. Therefore, the particles are
no longer homogenously distributed along the channel. The
minimum interparticle distance decreases with decreasing ¢
and the crossover time ?, is smaller than in region (I) because
particles “feel” the interaction with neighboring particles
much faster. Also, since the particles can be trapped inside
the clusters of chains, the mobility (F}) is reduced with
decreasing ¢.

C. Exponent of diffusion () in the intermediate (ITR)
subdiffusive regime

In the previous section we showed that the MSD [W(z)]
exhibits two different regimes of subdiffusion depending on
the region [(I) or (II)]: The exponent of diffusion («) in
the subdiffusive regime changes from o = 0.5 to o = 0.6
as the angle ¢ is decreased from ¢ = 90° to ¢ = 0°. The
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X

FIG. 7. Typical snapshots of the system after 10° simulation time
steps for (a) ¢ = 90° and (b) ¢ = 30°. Other parameters are B = 100
and T = 1.0.
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exponent « is calculated by fitting the MSD of our simulation
data in the region of interest (for instance, the ITR regime)
according to the relation W(t) o« t*. The increase in the
diffusion mechanism can be seen in Fig. 6(b), where « is
presented as a function of the orientation ¢. Note that «
increases with decreasing ¢, which can be understood in
terms of the dipole-dipole interaction dependence on ¢. For
¢ 2 55°, the interaction potential is mainly repulsive and,
therefore, it leads the system into a subdiffusive behavior,
where o = 0.5. The scaling W(¢) o % has been observed
experimentally in repulsive interacting particles [37] and was
also found from simulations [46,59] and through analytical
[62,63] calculations. In this case, the minimum interparticle
distance is approximately equal to d & (p)~! ~ 1.2. On the
other hand, for ¢ < 55°, the interaction potential exhibits
a competition between a repulsive and an attractive term
(cf. Fig. 3). The attractive part of the potential forces the
formation of clusters of chains [Fig. 7(b)], resulting in empty
spaces along the unconfined direction. This is illustrated in
Fig. 6(a), where the minimum distance between particles d
is shown as a function of ¢. Note that d decreases with
decreasing ¢. Since the system has a fixed density p, the empty
spaces between the clusters of chains results in an increase of
diffusion, which subsequently gives an exponent of diffusion
« that is slightly larger than 0.5.

In order to better understand the increase of the exponent
of diffusion «, we calculate the mean-square displacement
of each jth particle [W;(#)] using an expression similar to
Eq. (10),

W;(t) = ([x;(t + 81) — x;()])s, (14)

where j = 1,...,N represents each individual particle and
(-)r is an average over different time origins during the
simulation. In Figs. 8(a) and 8(b) we show W(r) (open
black circles) and W;(z) (gray triangles) for ¢ = 90° and
¢ =0°. Note that for the case ¢ =90°, W;(¢) deviates
very little from the mean-square displacement of the system
W (t). In this case, the particles in the system are distributed
homogenously along the unconfined direction. Therefore, the
diffusion of a tagged particle should be the same as
the diffusion of the whole system. On the other hand, for
the case of ¢ = 0°, W;(¢) deviates (much more) from W(z)
(than in the case ¢ = 90°). This is caused by the asymmetry
along the unconfined direction. In this case, it is possible
that a tagged particle can diffuse differently than the whole
system because of the formation of clusters of chains [cf.
Fig. 7(b)]. For instance, particles which are located at the
borders of the cluster of chains diffuse faster than particles
which are inside the cluster. This is the reason for an exponent
o that is slightly larger than 0.5 in the case where the
interaction potential has both repulsive and attractive terms
[region (II); see Sec. IV B].

V. WEAK MAGNETIC FIELDS

In the previous section, we showed that the diffusion
mechanism of the system is affected by the orientation of the
strong external magnetic field. We now turn to the question of
how the magnitude of B influences the diffusive properties of
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FIG. 8. (Color online) Mean-square displacement of the system
[open black circles, W ()] and mean-square displacement of individ-
ual particles [gray triangles, W;(#)] as a function of the time ¢ for two
different values of ¢ = (a) 90° and (b) 0°. The dashed orange lines
are a guide to the eye. Other parameters are B = 100 and 7 = 1.0.

the system. To this end, we perform similar simulations using
the same parameters of the previous section but with a weaker
magnetic field B = 0.1. Note that since we set T = 1.0, the
parameter n ~ 0.2 < 1, which means thermal fluctuations are
strong. The mean-square displacement (in log-log scale) as a
function of the time is presented in Fig. 9 for different values
of ¢.

There are two important observations regarding the results
for B =0.1: (i) note that the ITR regime for this case is
shifted to larger time intervals as compared to the previous case
(see Fig. 4), which is a consequence of the weaker coupling
of the dipoles with the external magnetic field, leading the
system to larger relaxation (crossover) times. Here, the ITR
regime can be identified in the time interval 10" < ¢ < 10%;
(ii) since the external magnetic field is small (compared to the
case of the previous section, B = 100), the coupling between
the magnetic dipoles and the external field is weaker, which
results in an approximately ¢-independent regime of diffusion
(cf. Fig. 9). This means that the exponent of diffusion « in the
ITR regime is a constant (¢ = 0.35) which is independent of
the orientation of the external magnetic field. We will further
discuss this particular value of « in the following section.
Note that, as opposed to the case of strong magnetic field,
the clustering of particles in a chainlike configuration along
the unconfined direction is less pronounced, as illustrated
in Fig. 10. Note that the orientation of the dipoles of the
ferromagnetic particles is almost random.
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FIG. 9. (Color online) Log-log plot of the mean-square displace-
ment (solid black curves) W(¢) as a function of the time ¢ for B = 0.1
and (a) ¢ =90°, (b) ¢ =70°, (c) ¢ =50° and (d) ¢ = 0°. The
dashed orange lines are a guide to the eye and the crossover time #,
for each case is indicated by the vertical arrow.

VI. INFLUENCE OF THE STRENGTH
OF THE MAGNETIC FIELD

In this section, we further investigate how the strength B
of the external magnetic field influences the diffusion of the
system. We analyze the case for ¢ = 90°, where the SFD is
found in the ITR regime for B = 100 [see Fig. 6(b)]. From
the calculations of the MSD using Eq. (10) for different values
of B, we found that, for B 2 10, the SFD regime is always
present in the ITR regime, i.e., W(¢f) 195 Therefore, we
investigate only the region 0.1 < B < 10.0, and the results
are plotted in Figs. 11(a)-11(d). For B = 10 [Fig. 11(a)], as
stated above, the SFD regime is present in the ITR regime,
which means o« = 0.5.

We found that by decreasing the value of B, the exponent of
diffusion («) decreases from o = 0.5 to @ = 0.35, as shown
in Fig. 12. The reason for this behavior is explained by the

N PDOPRRISDDOD DRRIODD® DD OB

o j

=~ PO ® @ ® 0 POEOAD @F

X

FIG. 10. Typical snapshots of the system after 10° simulation
time steps for (a) ¢ = 90° and (b) ¢ = 30°. Other parameters are
B=0.1and T = 1.0.
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FIG. 11. (Color online) Log-log plot of the mean-square displace-
ment (solid black curves) W(t) as a function of the time ¢ for ¢ = 90°
and (a) B =10, (b) B=2,(c) B=1,and (d) B = 0.1. The dashed
orange lines are a guide to the eye.

following: As the magnetic field is decreased, the coupling of
it with the dipoles also decreases, leading to an increase in
the rotational movement of the dipoles. Therefore, the energy
of a dipole is distributed between translational and rotational
motion. Recall that for large values of B (=100), the dipoles
were almost completely aligned with the field. The increase in
the rotation of the dipoles thus leads to a slowing down of the
translational diffusion, i.e., o decreases with decreasing B.

In order to strengthen this conclusion, we calculate the
mean-square angular displacement (MSAD) W,(¢), which is
defined similary to Eq. (10),

1 N
Wmt<r>:<ﬁ Z[ei<r+ar>—e,~(r)]2> L)
i=1

T

where 6; is the angular coordinate of the ith particle (cf. Fig. 1).
The results of calculations of the MSAD are shown in Fig. 13
for different values of B. Note that for all values of B, W,y ()
saturates after the initial motion. Furthermore, the MSAD
curves increases with decreasing B, which indicates that the

FIG. 12. Exponent of diffusion « (in the ITR regime) as a function
of the strength B of the external magnetic field for ¢ = 90°. The solid
line is a guide to the eye.
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FIG. 13. (Color online) Log-log plot of the mean-square angular
displacement W,,(¢) as a function of the time ¢ for ¢ = 90° and
B =10,B =2, B=1,and B = 0.1. The dotted orange horizontal
lines correpond to the saturation values of W(1).

rotational motion of the dipoles increases with decreasing
strength of the external magnetic field.

VII. CONCLUSIONS

We studied a system of interacting ferromagnetic dipoles,
confined in a q1D channel, that are subjected to ahomogeneous
external magnetic field. The analysis of the mean-square
displacement W (z) indicates that the diffusive properties of
the system depends on the orientation and on the strength
of the external field. For the case of strong magnetic fields
(we considered B = 100 as an example), we found that the
exponent of diffusion « increases with decreasing orientation
¢ [cf. Fig. 6(b)] of the external field, i.e., directing the magnetic
field towards the direction parallel to the channel. This increase
of diffusion was explained by the dependence of the dipole-
dipole interaction potential on ¢. For ¢ 2 55°, the interaction
is dominantly repulsive, leading the system into subdiffusive
motion in the ITR regime. On the other hand, for ¢ < 55°, the
interaction potential has a Lennard-Jones form, which creates
a competition between the repulsive and the attractive term of
the dipole-dipole potential. The attractive part of the potential
leads the system into clusters of chains [Fig. 7(b)]. The empty
spaces in the system allow for an increase in diffusion.

For small values of the magnetic field (e.g., B = 0.1), the
coupling between the magnetic dipoles and B is weak and the
dynamic behavior of the system becomes almost independent
of the orientation of B. This results in an exponent «, in the
subdiffusive regime, that is a constant (¢ = 0.35) for all values
of the orientation of the external magnetic field. The fact that
for weak magnetic fields the exponent of diffusion is smaller
than 0.5 (i.e., the slowing down of translational diffusion)
was explained by the weak coupling of the dipoles with the
external field, leading to an increase in the rotational motion
of the dipoles. Note that the value of « = 0.35 only holds for
the ITR regime, as discussed in the Introduction. In both cases
(i.e., strong and weak external magnetic fields), the system is
still in the single-file, diluted regime.

Our results show that the diffusion mechanism in this
system can be controlled by tuning the orientation and the
strength of the external magnetic field. This will allow one to
control the dynamics of magnetic particles in narrow channels
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by simply tuning the parameters which regulate the external
magnetic field.
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APPENDIX

In this section, we calculate the first (t;) and the second
terms (7?) present in the right-hand side of the equation of
motion (3) in Cartesian coordinates. The interaction torque t;
is given by the relation

int
Ti = MKi X E B[ja

j>i

(AL)

where p; is the magnetic moment of ith particle and ) i Bi-r;‘

is the magnetic field generated by all j particles on the ith

particle. Following Refs. [64,65], we write

B~ M) Ty (A2)
! ;|

where fi = r;;/|r;;|. Since the system is (in practice) two-

dimensional (2D), we may write

int __ N Ve
Bl.j = Bixjx + B,jy, (A3)

1
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rij = Ax;X+ Ay;;¥, (A4)

;= pncosd;X + pusind;y, (AS)

in Cartesian coordinates. Therefore, directly calculation of
Eq. (A1) using Egs. (A2)—-(AS) gives

T, =12 MCOSGiZB;Vj—MsinG,-Zij ,  (A6)

i i
where the terms B;; and B;; are given by

S[Axizju cosO; + Ax;j Ay siné’j] — /Lcosej|r,-j|2

Bx = ’
Y i I3
(A7)
. 3[Ax,'jAy,'j,bL cos6; + Ayizju sin9j] —u sin9j|r,-j|2
ij — .

|r;; 3
(A8)

Similarly, we can calculate the torque 7 due to the external
magnetic field B = B,X + B,y on the ith particle as

rlB =p; x B=12Z[pcos; B, — usinf; B;]. (A9)
Note that since the problem is 2D, the torques z; and t?
[Egs. (A6) and (A9), respectively] are in the z direction, i.e.,
perpendicular to the xy plane.
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