|
Record |
Links |
|
Author |
Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. |
|
|
Title |
Thermomechanical properties of a single hexagonal boron nitride sheet |
Type |
A1 Journal article |
|
Year |
2013 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
87 |
Issue |
18 |
Pages |
184106-184107 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000318653800001 |
Publication Date |
2013-05-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
80 |
Open Access |
|
|
|
Notes |
; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; |
Approved |
Most recent IF: 3.836; 2013 IF: 3.664 |
|
|
Call Number |
UA @ lucian @ c:irua:109010 |
Serial |
3638 |
|
Permanent link to this record |