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Thermomechanical properties of a single hexagonal boron nitride sheet
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Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of
hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion
of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to
1000 K. By analyzing the mean-square height fluctuations 〈h2〉 and the height-height correlation function H (q)
we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN
(i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in
GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear
stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends
strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and
Gruneisen parameter are estimated to be 25.2 J mol−1 K−1, 7.2 × 10−6 K−1, and 0.89, respectively.
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I. INTRODUCTION

A single layer of hexagonal boron-nitride (h-BN) is a
wide gap insulator that is very promising for optoelectronic
technologies,1,2 tunnel devices, and field-effect transistors.3–5

According to the well-known Mermin-Wagner theorem,6 the
stability of any two-dimensional crystal is only possible in
the presence of atomic corrugations which distort the perfect
honeycomb lattice and allow the atoms to explore the out-of-
plane direction. Experimental observations have found ripples
in suspended sheets of graphene,7,8 and atomistic simulations
suggest that the strong bonds between the carbon atoms
determine the features of these ripples.9 Understanding the
behavior of the ripples is important for many reasons.10 They
affect the electronic transport properties, e.g., in GE the ripples
are believed to be one of the dominant scattering sources which
limits the electron mobility.11,12

h-BN ribbons doped by carbon have recently been
proposed.5,13 In addition, BN based nanostructures are po-
tential materials for thermal management applications14–19

because of their high thermal conductivity and sensitivity
to isotopic substitution, etc. Therefore, the knowledge of the
shape and the temperature dependence of the intrinsic ripples
is fundamental to devise novel nanodevices based on this
material.

Both GE and h-BN sheets have a honeycomb lattice
structure, however the different electronic properties and
phonon band structure20–22 result in unequal morphologies and
corrugations. Transmission electron microscopy is widely used
to resolve the individual atoms in suspended h-BN sheets23

where ripples inherently exist. First-principle calculations have
been performed using small unit cells, periodically replicated,
which are unable to model long-wavelength corrugations
which require thousands of atoms24 while the mechanical
properties of a h-BN sheet can be estimated by using discrete
Fourier transform.25 Conversely, atomistic simulations using
molecular dynamics simulations (MD) enable us to study
thermomechanical properties directly on large scale samples.

The modified Tersoff potential26 (TP) (parametrized originally
for carbon and silicon) with various sets of parameters have
shown to predict reasonable values for the thermomechanical
properties of the h-BN sheet. In the pioneer work by Albe et al.,
reparametrized TP was used to study the impact of energetic
boron and nitrogen atoms on a cubic-BN target.27 Some other
groups have also parametrized TP using various experimental
data, e.g., Sekkal et al.28 treated h-BN as a one-component
system, using the same potential parameters for both boron (B)
and nitrogen (N) (neglecting the B-N interaction) to investigate
the structural properties. Matsunaga et al.29 proposed the TP
of B in order to simulate cubic boron carbonitrides which are
compatible with the parameters of nitrogen fitted by Kroll,30

and recently, Liao et al.31 and Sevik et al.32 reported TP
parameters that were used to study the mechanical properties
and the thermal conductivity of a h-BN sheet, respectively.

In this study, we investigate the thermal rippling behavior
of free standing monolayer h-BN by using state-of-the-art
molecular dynamics (MD) simulations. We adopted the TP
potential reparametrized by Sevik et al. which has been
shown to represent the experimental structure and the phonon
dispersion of the two-dimensional h-BN sheet. We found that
h-BN is more corrugated and a less stiff material as compared
to GE. The height-height correlations can be explained by
the theory for continuum membranes.33 In addition, we report
results of both uniaxial and shear stress of a h-BN sheet and
compare it with those found for GE. The buckling transition for
compressed h-BN occurs earlier than for GE and the induced
pattern of ripples when subjected to either uniaxial or shear
stress shows significant differences.

This paper is organized as follows. In Sec. II, we introduce
the atomistic model and the simulation method. Then, in
Sec. III we analyze the behavior of the thermal ripples of a
h-BN sheet. Here, we obtain the bending rigidity, the heat
capacity, the thermal-expansion coefficients, and we study the
buckling transition of the h-BN sheet when uniaxial external
strain and shear stress are applied. All the results are compared
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with the ones obtained for a GE sheet. Finally, in Sec. IV, we
present our conclusions.

II. METHODS

Classical atomistic molecular dynamics (MD) simulation
is employed to simulate large scale samples of h-BN and
GE at temperatures varying from 10 K up to 1000 K. We
used a modified Tersoff potential (which is an ordinary
defined potential in the LAMMPS package34,35) according to the
parameters proposed by Sevik et al. for the h-BN sheet. All the
parameters and a detailed description of the potential energy
is given in Ref. 32. To simulate GE we have used the AIREBO
potential36 which is suitable for simulating hydrocarbons. We
employed N -P -T ensemble simulations with P = 0 using the
Nosé-Hoover thermostat which enables us to allow the size
of the system to equilibrate (i.e., the size of the system is not
fixed). All the reported values have been computed averaging
over 300–400 snapshots taken over uncorrelated samples.

We start with a square-shaped h-BN sheet with periodic
boundary conditions and initial dimensions 322 Å × 321 Å
(315 Å × 315 Å for GE) in the x and y direction, respectively,
which correspond to a total number of N = 37 888 atoms,
and which are sufficiently large in order to capture the
long-wavelength regime. Periodic boundary conditions were
adopted in both directions.

To analyze the thermal ripples we computed the diffraction
pattern which is typically studied in experiments to detect
the size and shape of the corrugations.7 We obtained also the
mean-square value of the out-of-plane displacements 〈h2〉 of
the atoms and, by following previous works,37,38 the height-
height correlation function 〈H (q)〉 which was determined
by considering an average of the height between the first
neighbors of each atom. The latter was shown to follow a q−4

behavior that is expected from the theory of continuum two-
dimensional membranes at large values of q in the harmonic
approximation (see below). To analyze the differences between
the strain induced corrugations in the h-BN and the GE sheets
we applied uniaxial and shear stress on both systems as is
schematically shown in Fig. 1. In order to apply strain we set
the force on the two ends equal to zero and move the end atoms
with an infinitesimal compression step (δx = 0.01 Å) in the
desired direction. After each compression step we wait for 2 ps
to allow the system to relax and to ensure that the system is in
thermal equilibrium.39 Uniaxial compressive stress is applied
along the zig-zag or armchair direction separately, and the
shear stress is applied on the armchair edges with the opposite
velocity for the top and bottom edges. The details of the used
method of applying the boundary stress can be found in our
previous studies.39–41

The TP function26 used in the LAMMPS package34,35 can be
expressed as

E =
∑

i

Ei = 1

2

∑

(i �=j )

φ(rij ), (1)

with

φ(rij ) =
∑

i

∑

j (>i)

fc(rij )[fR(rij ) + bijfA(rij )], (2)

FIG. 1. (Color online) Schematic view of the single h-BN sheet.
Smaller-yellow (bigger-blue) circles refer to the B (N) atoms. The
rectangles indicate the atoms that are fixed during compression.
Dashed (straight) lines correspond to armchair (zig-zag) uniaxial
compression in the direction given by the arrows. Open arrows
indicate the shear stress applied in the armchair direction.

where fc, fR , and fA are cutoff functions, the repulsive pair
term, and the attractive pair term, respectively. rij and bij

are respectively the distance from atom i to atom j and the
bond order function. The use of TP disregard contributions
coming from charge re-distribution which may occur in an
ionic crystal. The inclusion of this effect in h-BN modifies the
phonon spectrum significantly only for energies corresponding
to the optical modes.42,43 The large scale thermal ripples
addressed here are governed mainly by the transversal acoustic
mode (TA), which accounts for out-of-plane fluctuations, and
it couples with the in-plane modes which renormalizes the
long-wavelength behavior, e.g., the bending rigidity κ can be
calculated directly from the TA mode.44 Therefore, the charge
redistribution is expected not to affect the thermal fluctuations
analyzed here and the use of the TP is justified.45

III. RESULTS AND DISCUSSION

A. Thermal excited ripples

In Fig. 2(a) we show a height contour plot of the atoms of
the h-BN sheet for an arbitrary snapshot taken during the MD
simulation at 300 K. The corresponding modeled diffraction
pattern is shown in Fig. 2(b). This pattern is very similar to
the one obtained for the GE sheet7 with the main difference
in the distance between the Bragg points due to the unequal
lattice constant of h-BN and GE. From the zoom plot around
q = (0,0) [Fig. 2(c)] one observes the local structure of the
central Bragg point for these intrinsic thermal ripples of h-BN.
Notice that the lack of the presence of the q = (0,0) component
is a consequence of the absence of a perfectly flat h-BN sheet.

The signatures of the thermal induced ripples can also be
seen in the mean-square value of the out-of-plane fluctuations
〈h2〉. In Fig. 3(a) we show 〈h2〉 as a function of temperature.
In comparison with GE (included also in this figure for
comparative purposes) we observe that 〈h2〉 is always larger for

184106-2



THERMOMECHANICAL PROPERTIES OF A SINGLE . . . PHYSICAL REVIEW B 87, 184106 (2013)

FIG. 2. (Color online) (a) Contour plot of the heights for an arbitrary snapshot taken during the MD simulation at 300 K. (b) Corresponding
simulated diffraction pattern for the sample shown in (a). (c) Zoom view of (b) around q = (0,0).

the h-BN sheet. The weaker (stronger) the atomic B-N (C-C)
bonds, the larger (smaller) the corrugations in h-BN (GE).
Notice that the B-N bond is not pure covalent and it has an
ionic character which is due to the different electronegativity
between the two elements, i.e., the electrons are localized
closer to the N atoms rather than the B atoms. Although
this partially ionic structure of the h-BN layer increases the
interlayer interaction resulting in a larger hardness of 3D bulk
h-BN relative to graphite, it makes the single layer of BN less
stiff than graphene. Moreover, the stacking of h-BN sheets in
bulk h-BN is AAA stacking which is different for the ABC
stacking in graphite.23

B. Bending rigidity κ

According to the two-dimensional theory of continuum
membranes the height-height correlation function, in the
harmonic approximation, where the out-of-plane and in-plane

FIG. 3. (Color online) Variation of (a)
〈
h2

〉
and (b) the bending

rigidity versus temperature for both h-BN (open squares) and GE
(solid circles). (c) Height-height correlation function H (q) of h-BN
at two different temperatures is indicated. The dashed lines are the
harmonic q−4 law.

modes are decoupled, is expected to behave as

H (q) = 〈|h(q)|2〉 = NkBT

κS0q4
, (3)

where κ is the bending rigidity of the membrane, N is the
number of atoms of the sample, S0 is the surface area per atom,
and kB is the Boltzmann constant. In the large wavelength
limit, i.e., for q → 0, the height fluctuations are suppressed by
anharmonic couplings between bending and stretching modes
giving rise to a renormalized q-dependent bending rigidity and
hence Eq. (3) is no longer valid.37,38,46 In Fig. 3(b) we show κ

for h-BN calculated from the harmonic part of H (q) between
q = 0.5 Å−1 and q = 1 Å−1. In agreement with the larger
values of 〈h2〉, we observe that the h-BN membrane possesses
a smaller κ as compared to GE and in the whole temperature
range it is about 16% smaller at room temperature (300 K).
Note that κ for both h-BN and GE increase with temperature. In
Fig. 3(c) we show H (q) at 200 and 1000 K were the harmonic
behavior can be clearly observed (fitted with a dashed line)
and, as expected, with increasing temperature H (q) is shifted
to larger q. This figure also reveals that the ripples are not
characterized by a unique wavelength and instead follow the
behavior expected from continuum membrane theory.

Before ending this section it is worthwhile to investigate an
alternative method to estimate the bending rigidity (flexural
rigidity). A common method for calculating the bending
rigidity of the BN sheet is by performing simulations of BN
nanotubes as a function of its radius (R) of the curved tubes
and then extrapolating the results to R → ∞. Hence, one can
calculate the elastic energy of the nanotube as a function of
the inverse square of the radius, E = 1

2κR−2. This method
was used in Ref. 25 and in our previous work41 to calculate the
zero-temperature bending rigidity of GE and h-BN which were
found to be 1.46 and 1.29 eV, respectively. The result obtained
with the Tersoff potential using Eq. (3) is less than the result of
Ref. 25. The bending rigidity of GE is larger than h-BN with
about 0.15 eV in agreement with Ref. 25. In order to have an
independent check we estimated the bending rigidity of a BN
sheet by performing several ground-state simulations for (n,n)
BN nanotubes with n = 5, . . . ,20 using the Tersoff potential.
Figure 4 shows the variation of the strain energy per atom as a
function of the inverse square radius of the tube. Fitting a line
to the data and dividing by the area of half of unit-cell atom
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FIG. 4. (Color online) Variation of strain energy versus inverse
square of BN-nanotube radius using Tersoff potential.

results in κ = 0.86 eV. The result of the Tersoff potential agrees
well with our estimation for κ using Eq. (3) (Ref. 25). Thus
we can conclude that results based on the Tersoff potential
underestimate the bending rigidity as compared to the result
from DFT.

C. Heat capacity, thermal expansion, and Gruneisen parameter

The variation of the total energy per atom with temperature
(�10 K) is shown in Fig. 5(a). The total energy varies
linearly with temperature and gives the corresponding lattice
contribution to the molar heat capacity at constant pressure (the
average size of the system after relaxation is taken constant)
which for the h-BN sheet results into

CP = dET

dT
= 25.2(3) J mol−1 K−1, (4)

which is comparable to the one for a GE sheet, i.e.,
24.5(9) J mol−1 K−1 and close to the well-known classical mo-
lar heat capacity, i.e., C � 24.94 J mol−1 K−1, i.e., the Dulong-
Petit value, where Re is the universal gas constant. Notice that
the heat capacity is a temperature-dependent parameter that
will decrease for temperature below the Debye temperature.
However, the classical MD simulation gives the correct high-
temperature asymptotic limit, i.e., the Dulong-Petit value, but
fails in the low and intermediate temperature range.

In Fig. 5(b) we show the variation of the averaged B-N bond
length with temperature. The linear behavior enables us to

( 
   

)
(  

 )

(  )

FIG. 5. (Color online) Variation of (a) the total energy per atom
and (b) the averaged bond length versus temperature for h-BN and
GE (the error bar is less than 10−4 eV/atom for the total energy).

calculate the linear thermal expansion of the lattice parameter
of a h-BN sheet as

γBN = 1

a

da

dT
= 7.2(1) × 10−6 K−1, (5)

where a = 1.442 Å is the zero-temperature lattice parameter.
The obtained γ is 33% larger than the one measured for cubic
BN, i.e., 4.8 × 10−6 K−1,47 and is comparable to the one found
for GE, i.e., γGE = 10.0(7) × 10−6 K−1. The latter (i.e., γGE)
is in good agreement with our previous studies.39,40

From the obtained values of γ and C we can compute the
Gruneisen parameter,

αBN = γB

Cρ
= 0.89, (6)

where B is the two-dimensional bulk modulus and ρ is the
mass density. Using Bh-BN = 3 eV Å−2 [BGE = 12.7 eV Å−2

(Ref. 48)], ρh-BN = 24.82/Sh-BN = 3.81 × 10−4 g m−2 (ρGE =
7.6 × 10−4 g m−2) for h-BN (GE), we obtain αBN = 0.89
(αGE = 1.2). Note that the estimated value of αGE is better
than the one found in Ref. 49, i.e., −0.2, and is closer to the
experimental result, i.e., 2.0.50

D. Buckling transition

The different stiffness between the h-BN and GE sheets
results in different buckling transitions. To study this, we
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FIG. 6. (Color online) Variation of 〈h2〉 versus external uniaxial
strain in the (a) armchair and (b) zig-zag direction. Contour plot of the
heights of compressed h-BN sheet samples subjected to a compressive
strain for fixed 〈h2〉 = 20 Å2 for compression in (c) zig-zag direction
of the h-BN sheet. Arrows indicate the stress direction.
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FIG. 7. (Color online) Variation of buckling strain with the
longitudinal length of the BN sheet which is compressed along the
zig-zag direction.

compressed the systems uniaxially where we considered both
zig-zag and armchair directions. This was done by fixing one
row of atoms in each edge during the compression steps as
is indicated schematically in Fig. 1. The compression rate
was taken μ = 0.5 m/s which is similar to the one used in our
previous study,40 and small enough to guarantee that the system
is in equilibrium during the whole compression process.51 The
simulations were carried out at room temperature. Figure 6(a)
shows the variation of 〈h2〉 versus strain, i.e., ε = μt/l where
t is the time (after starting the compression) and l is the initial
box length in the direction of the compression. The buckling
transition for the h-BN sheet kept at room temperature is found
to be 0.6 (0.1) which is smaller than the one for GE, i.e., 1.0
(1.2), for uniaxial compression along the zig-zag (armchair)
direction.52 Hence, when the compression is applied in the
zig-zag direction, the h-BN sheet resists much more against
the external uniaxial stress as compared to the case where
the stress is applied along the armchair direction. The smaller

critical strain at which the buckling transition in the armchair
direction of the h-BN sheet takes place indicates its more
sensitive nature to external uniaxial stress.53 Although the
same argument holds for GE, the difference between the two
directions is much smaller. Notice that DFT calculations result
in a deviation in bending rigidity (flexural rigidity) between ZZ
BN-nanotube and AC BN-nanotube (ZZ becomes larger than
AC) for radius smaller than �3 Å,25 while for larger radius
they are the same.

A contour plot of the buckled h-BN sheet with 〈h2〉 = 20 Å2

and compressed in the zig-zag direction is shown in Fig. 6(c).
The obtained buckling transition for GE, i.e., 0.8%, agrees
very well with our previous studies39 and is in the range of the
experimental measured buckling transition for suspended GE,
i.e., 0.5–0.7%.54,55

It is also interesting to compare the buckling strain with
those predicted by the theory of loaded beam. Euler theory
for a two end-loaded beam having length L predicts that εb ∝
L−2.40,56 The first demonstration by MD of Euler buckling in
nanostructures goes back to the pioneer work by Yakobson
et al.57 We performed several simulations in order to find the
length dependence of the buckling strain for BN sheets which
are, e.g., compressed along the zig-zag direction. Figure 7
shows the variation of εb with the longitudinal length (L)
of the zig-zag BN sheet. The solid line is a fit to L−2

and the symbols are the results of our MD simulations
which are qualitatively in agreement with the theory of
loaded beam.

Finally, we report the results for h-BN and GE sheets under
shear stress. Here we applied the stress only in the armchair
direction as is described schematically in Fig. 1. We found
that, due to the larger stiffness, to reach the same value of
〈h2〉 a larger shear stress has to be applied in GE as compared
to h-BN. In Figs. 8(a) and 8(b) one can observe significant
differences between the corrugated configurations of h-BN
and GE sheets. These samples were subjected to a shear stress
of ε = 1.5%. While h-BN is highly sensitive to shear stress
and deforms easily, GE can resist larger stress values due to
its larger rigidity.

FIG. 8. (Color online) Effect of a shear stress of about 1.5% on the out-of-plane deformation of (a) the h-BN sheet and (b) the graphene
sheet. Arrows indicate the stress direction on the armchair edges. Note the larger values of the heights in h-BN.
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IV. CONCLUSIONS

The thermal properties of a boron nitride sheet were studied
using large scale atomistic simulations. We showed that the
scaling properties of a h-BN sheet follows closely the results
of membrane theory and hence the thermal excited ripples
are not characterized by any particular wavelength. Using
the harmonic part of the height-height correlation function
we found an increasing bending rigidity with temperature
which is smaller than the one of graphene. We found that
the buckling transition for h-BN depends on the applied
compression direction and is much smaller than the one of
graphene. The obtained molar heat capacity agrees very well
with the well-known Dulong-Petit number, 25.2 J mol−1 K−1

and the thermal-expansion coefficient was found to be positive
and equal to 7.2 ×10−6 K−1. The Gruneisen parameter

0.89 is found to be smaller than the one for graphene,
i.e., 1.2. We showed that the different stiffness between
the GE and h-BN sheets leads to different patterns of
deformations in the presence of either uniaxial or shear
stress.
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