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Piezoelectric surface acoustical phonon limited mobility of electrons in graphene
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We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined
action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic
deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T ) regime, the momentum
relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n,
corresponding to the mobility μ ∝ 1/

√
n and 1/n, respectively for the PA and DA scattering mechanisms. In

the low-T Bloch-Grüneisen regime, the mobility shows the same square-root density dependence μ ∝ √
n, but

different temperature dependencies μ ∝ T −3 and T −4, respectively for PA and DA phonon scattering.
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I. INTRODUCTION

Graphene,1 due to its unique linear chiral electronic
dispersion,2 exhibits novel transport properties3,4 and has
great potential as a desirable material for future electronic
and optical technologies.2,5 Momentum relaxation is a key
phenomenon that governs transport of Dirac fermions in
graphene.6 It is of practical interest for developing high-speed
electronics and in recent years has been extensively studied
both theoretically7–9 and experimentally.10–13 The scattering
by defects,7,14–17 impurities,18–22 and phonons9,12,17,23–28 has
been investigated to determine and control the dominant
mechanism that limits the carrier mobility in graphene.

In device structures, graphene is often deposited on a SiO2

wafer, which imposes constraints on the excellent transport
properties observed in suspended graphene.10,29 Recently,
structures on such promising substrate materials as h-BN
(Refs. 30 and 31) and GaAs (Refs. 32 and 33) have been
fabricated and studied with the intention for high-quality
graphene electronics. Along with its superior surface quality
and strong hydrophilicity preventing folding of large-scale
graphene flakes, GaAs has a substantially larger dielectric
constant in comparison with SiO2 and h-BN hence improved
electrical screening. In such high-purity GaAs structures,
electron-phonon scattering can be a decisive factor in limiting
the mobility of Dirac fermions and the piezoelectric GaAs
substrate can serve as a powerful tool for studying the
electronic properties of graphene by means of remote surface
acoustical phonons.

In this work, we study the temperature and density
dependencies of the carrier mobility in monolayer graphene
on a GaAs substrate. We calculate the mobility limited by
scattering from the piezoelectric potential of surface acoustical
phonons of the substrate (PA phonons) versus the deformation
potential of acoustical phonons of graphene (DA phonons). In
experiment, the typical wavelength of phonons taking part in
scattering events is much larger than the distance d of several
angströms between the graphene sheet and the GaAs substrate
so that the extrinsic interaction of PA phonons with Dirac
fermions is quite strong and, as we shall see, can dominate the
intrinsic interaction of DA phonons.

II. THEORETICAL MODEL

A. Extrinsic PA scattering

Crystal surfaces modify substantially bulk phonon
modes and can change qualitatively the carrier relaxation
characteristics.34,35 In crystals with lack of a center of symme-
try such as in GaAs, the displacement field of Rayleigh waves
(a combination of longitudinal and transversal oscillations)
propagating on a crystal-free surface36 induces a piezoelectric
polarization of the lattice. It leads to an electric potential both
inside and outside of the GaAs substrate that couples to the
electrons in graphene. The Hamiltonian of such piezoelectric
interaction between surface acoustical phonons of GaAs and
Dirac fermions in graphene can be written as

H PA
e-ph = eϕ(R,t) = 1√

A
∑

q

γ PA
q eiqRbq + c.c., (1)

where the electric potential ϕ(R,t) in the plane of the
graphene sheet is given by the solution of the Poisson equation
as ϕ(R,t) ∝ q̂x q̂ye

i(qR−ωq t)e−qd .37 Here, q and ωq = vPAq

are the phonon momentum and energy with the velocity
of Rayleigh waves vPA ≈ 0.9vb ≈ 2.7 × 103 m/s, vb is the
bulk sound velocity in GaAs, and q̂x,y = qx,y/q. In Eq. (1),
bq denotes the amplitude of the phonon field and the
piezoelectric electron-phonon interaction vertex is defined
as |γ PA

q |2 = c2
PA(q̂x q̂y)2e−2qdh̄2vPA/(p0τ̄PA) where we use the

nominal time τ̄PA ≈ 8 ps, introduced in Ref. 38 for carrier
scattering from bulk piezoelectric acoustical phonons. Here,
the characteristic wave vector p0 = 2.5 × 106 cm−1 is related
to the optical phonon energy in GaAs and the numerical factor
cPA ≈ 4.9 is determined by the elastic properties of GaAs.37

The strongest electron-PA phonon interaction takes place for
surface phonons propagating along the diagonal direction with
qx ≈ qy so that in (1) we can approximate (q̂x q̂y)2 ≈ 1

4 . Taking
also e−2qd ≈ 1 for typical values of d ∼ 5 Å,32,33 one can see
that γ PA

q in this well-justified approximation is independent
of q. This differs from the linear wave-vector dependence of
the DA interaction vertex and results in a new, qualitatively
different, contribution to the mobility.
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B. Intrinsic DA scattering

The Hamiltonian of electron-acoustical phonon interaction
due to the deformation potential in graphene can be written as

HDA = 1√
A

∑
q

γ DA
q eiqRbq + c.c. (2)

with the DA interaction vertex defined as |γ DA
q |2 =

h̄2qvDA/(p2
0 τ̄DA). Here, we introduce the nominal scattering

time 1/τ̄DA = �2p2
0/(2h̄ρv2

DA) for DA phonons and find τ̄DA ≈
0.8 ps for the following values of the graphene parameters9:
� = 6.8 eV the deformation potential constant, ρ = 7.6 ×
10−7 kg/m2 the mass density, and vDA = 2.0 × 104 m/s
the sound velocity in graphene, which is essentially larger
than the sound velocity in GaAs. The direct comparison
|γ PA

q |2/|γ DA
q |2 ≈ 2.0 × 105cm−1/q shows both the PA and DA

scattering mechanisms can be important in typical experimen-
tal situations and their actual contributions to the mobility are
determined by the carrier density n and temperature T .

III. MOMENTUM RELAXATION

A. Relaxation rate of a test electron

The momentum relaxation rate of an electron due to
scattering from the potential of the s = PA, DA phonons is

1

τ s
1 (ελk)

=
±,q∑
λ′,k′

(1 − cos θkk′)W±sq
λk→λ′k′

1 − f (ελ′k′)

1 − f (ελk)
, (3)

where ελk = λvF k is the electron energy in graphene with
the chirality λ and the Fermi velocity vF . The Fermi function
f (ελk) is determined by the Fermi energy εF and the lattice
temperature T . The transition probability due to the emission
(+) and absorption (−) of phonons is

W
±sq
λk→λ′k′ = 2π

h̄

∣∣M±sq
λk→λ′k′

∣∣2
(

N (ωsq) + 1

2
± 1

2

)

× δ(ελk − ελ′k′ ∓ h̄ωsq) (4)

with the Bose factors N (ωsq) representing the number of s,q
phonons. Making use of the electron wave function in graphene
ψT (R) = |e−iθk ,λ|e−ik·R/

√
2A where θk is the polar angle of

the electron wave vector k, we obtain for the square modulus
of the PA and DA matrix elements

∣∣M±sq
λk→λ′k′

∣∣2 = δk′,k∓q

A
∣∣γ s

q

∣∣2Fλ′λ(θkk′). (5)

Here, θkk′ = θk′ − θk and the form factor Fλ′λ(θkk′) = (1 +
λλ′ cos θkk′)/2 represents an overlap of the spinor wave
functions. We consider electron-phonon scattering in doped
graphene with εF much larger than the typical acoustical
phonon energy. In such samples, only intrachirality subband
transitions are effective so we take λ = λ′ = 1 and omit this
index. Then, we represent the momentum relaxation rate due
to extrinsic PA and intrinsic DA phonons as

1

τ s
1 (εk)

= ac2

π

1

τ̄s

(
k

p0

)1+m

G2+m(x), (6)

where we introduce the function

Gk(x) =
∑
±

∫ z±

0
dz zkη(a,z)�±(x,y) (7)

with z = q/2k and z± = 1/(1 ± a). In Eq. (6) for PA
phonons, we take m = 0 and a = aPA = vPA/vF , c = cPA;
for DA phonons m = 1, a = aDA = vDA/vF , c = cDA = 2

√
2.

For brevity, we define �±(x,y) = [N (y) + 1
2 ± 1

2 ][1 − f (x ∓
y)]/[1 − f (x)] where x = (εk − εF )/T and y = ωsq/T =
z(k/kF )(T s

BG/T ). The characteristic Bloch-Grüneisen (BG)
temperatures are T s

BG = 2h̄vskF . The function η(a,z) =√
1 − [a ± (1 − a2)z]2/(1 ∓ 2az) restricts backscattering pro-

cesses due to the chirality. As far as vF ≈ 1.15 × 106 m/s is
much larger than vs in GaAs and graphene, in our analytical
calculations we take η(a,z) ≈ η(0,z) = √

1 − z2 and z± ≈ 1.

B. Analytical results in different regimes

First, we analyze analytically the electron relaxation in the
regimes where PA and DA phonon scattering are qualitatively
different. For a typical doping level n = n̄ × 1012 cm−2

with n̄ ∼ 1, we have εF ∼ 1350 K and for energies and
temperatures up to room temperature, the system of massless
Dirac fermions is a well-defined Fermi gas where carrier
scattering events due to PA and DA phonons are kinematically
quasielastic, i.e., |ε − εF |,T 	 εF . Therefore, we consider
three typical temperature regions with boundaries given in
terms of T s

BG. Because T DA
BG /T PA

BG ≈ 8, all three regions are
well defined.

1. High temperatures

In the high-temperature regime T 
 T s
BG, PA and DA

phonons with energies ωsq ∼ T s
BG are important in the relax-

ation processes and because ωsq 	 T , such scattering events
are statically quasielastic.38 Under this severe condition, we
have y 	 1 so that the Bose factors are large N (y) ≈ 1/y 
 1,
and scattering is dominated by induced phonon emission and
absorption processes. Therefore, in Eq. (7) to leading order
in y, we can replace f (x ± y) by f (x) while N (y) + 1

2 ± 1
2

by 1/y. Then, G2+m(x) ≈ bT /TBG (with m = 0 and b = 1
3 for

PA and m = 1 and b = π/16 for DA phonons) and for the
momentum relaxation rate in this regime, we obtain

1

τ s
1 (εk)

= bc2

2π

1

τ̄s

(
kF

p0

)m+1
T

TF

. (8)

Here, the relaxation rate for DA phonons reproduces the
previous result from Refs. 9. The linear T dependence of τ1(ε)
both due to PA and DA phonon scattering and its independence
on the energy ε − εF are distinctive features of statically
quasielastic electron-phonon scattering in the high-T regime
where the scale of variation of τ1(ε) is TF , which is larger
than T s

BG, and the Pauli exclusion principle does not play an
essential role. In this regime, the extrinsic PA and intrinsic DA
contributions to τ1(ε) differ by a factor

1/τ PA
1 (εk)

1/τDA
1 (εk)

= γH

p0

kF

≈
√

0.5

n̄
, (9)
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where γH = bPAc2
PA τ̄DA

bDAc2
DA τ̄PA

≈ 0.5 is determined by the elastic
properties of graphene and GaAs. Thus, in this regime we find
that independent of ε − εF and T , the extrinsic PA phonon
contribution dominates the intrinsic DA phonon contribution
to the momentum relaxation rate at densities smaller than
n = 5 × 1011 cm−2 and this enhancement is a square-root
function with n.

2. Low temperatures

In the low-temperature regime T 	 T s
BG, if additionally the

electron energy is small |ε − εF | 	 T s
BG, electronic transitions

are dominated by small-angle scattering events. The typical
phonon momenta q 	 kF correspond to the z → 0 limit and
one can extend the integration over z in Eq. (7) up to infinity.
Replacing also 1 − z2 by 1 and taking into account that
z ≈ y(T/T s

BG), we have Gk(x) ≈ (T/T s
BG)k+1Fk(x) where we

define the function Fk(x) = ∑
±

∫ ∞
0 dy yk�±(x,y). Hence,

the momentum relaxation rate in the low-T regime is given as

1

τ s
1 (εk)

= ac2

π

1

τ̄s

(
kF

p0

)m+1 (
T

T s
BG

)m+3

F2+m(x). (10)

Here, one should distinguish two subregimes. For thermal
electrons |ε − εF | � T , electronic transitions with typical
phonon momenta h̄q ∼ T/vs dominate. The function Fk(x)
weakly depends on x for x � 1 and can be replaced by
Fk(0). Hence, in this BG regime the relaxation rate (10)
exhibits T 3 and T 4 dependencies, respectively, for PA and DA
phonon scattering. For hot electrons in the opposite T → 0
limit, transitions are dominated by spontaneous emission of
phonons. We have Fk(x) ≈ |x|k/(1 + k) for |x| 
 1, and
the rate (10) does not depend on T and is proportional to
(|ε − εF |/T s

BG)m+3. The direct comparison of the extrinsic PA
and intrinsic DA contributions to τ1(ε) in the low-T regime
gives for thermal electrons

1/τ PA
1 (εk)

1/τDA
1 (εk)

= γL

p0

kF

TPA

T
, (11)

where the factor γL = a3
DAc2

PAF2(0)τ̄DA

a3
PAc2

DAF3(0)τ̄PA
≈ 41. For hot electrons,

γL is even larger. Thus, in the low-T regime, the intrinsic DA
contribution is negligible while the extrinsic PA contribution
leads not only to strong enhancement of the momentum
relaxation rate but changes its dependence on the lattice
temperature from T 4 to T 3.

3. Intermediate temperatures

In the region of intermediate temperatures T PA
BG 	 T 	

T DA
BG , small-angle scattering events dominate the DA phonon

relaxation with the rate given by Eq. (10), while the PA phonon
relaxation is governed by quasielastic large-angle scattering
events with the rate (8). Therefore, the relaxation of thermal
electrons due to scattering from intrinsic DA phonons is still
suppressed in comparison with that from extrinsic PA phonons
by a factor

1/τ PA
1 (εk)

1/τDA
1 (εk)

= γI

p0

kF

(
TDA

T

)3

, (12)

where γI = bPAc2
PA τ̄DA

F3(0)c2
DA τ̄PA

. As seen, this suppression depends
strongly on T , however, due to the small numerical prefactor
γI ≈ 4 × 10−3 (2.5 × 10−2 for hot electrons), it is large only
near the low edge T � T PA

BG of this intermediate temperature
region with the relaxation rate linear in T . Towards the upper
edge T � T DA

BG , the DA phonon contribution to τ1(ε) increases
and at high densities the PA contribution prevails with the T 4

behavior of the momentum relaxation rate.

C. Mobility of Dirac fermions

Within the Boltzmann transport theory, the electron mo-
mentum relaxation time averaged over its energy

τ s
1 (n,T ) =

∫
dε D(ε)τ s

1 (ε) [−∂f (ε)/∂ε] , (13)

where D(ε) is the electron density of states, determines the
carrier mobility in graphene as18

μs(n,T ) = evF

h̄kF

τ s
1 (n,T ). (14)

As seen from Eqs. (8) and (10) in the high-T regime as well
as for thermal electrons in the low-T BG regime, τ1(ε) is
independent of ε. Therefore, we find that in the high-T regime
the mobility shows the same μ ∝ T −1 temperature dependence
for both the PA and DA scattering mechanisms, but different
density dependencies μ ∝ 1/

√
n and μ ∝ 1/n, respectively,

for PA and DA phonon scattering. In the low-T BG regime, the
mobility exhibits the same density dependence μ ∝ √

n, but
different temperature dependencies μ ∝ T −3 and μ ∝ T −4,
respectively, for PA and DA phonon scattering.

IV. NUMERICAL RESULTS

In Figs. 1–3, we present our numerical calculations based on
Eqs. (6) and (7). In Fig. 1, we study the electron momentum
relaxation due to the combined action of extrinsic PA and
intrinsic DA phonons. The relaxation rate versus T is plotted
for different values of ε − εF and n. It is seen in all panels
that at low T the rate is almost independent of T , which
corresponds to the behavior of hot electrons with ε − εF 
 T .
In the small-angle scattering subregime T 	 ε − εF 	 T s

BG,
the intrinsic DA scattering is strongly suppressed with respect
to the extrinsic PA scattering (cf. the top left and top right
panels) and this is consistent with the above discussion that
1/τ s

1 ∝ (ε − εF /T s
BG)3+m. With an increase of ε − εF , this

dependence weakens, and in the large-angle scattering sub-
regime ε − εF � T s

BG, the PA and DA phonon contributions
to the relaxation of hot electrons become of the same order
and the DA phonon contribution can even dominate at low
densities (cf. the bottom right panel). In the high-T regime,
as seen in all panels of Fig. 1, the relaxation rate exhibits the
same linear T dependence, in agreement with Eq. (8). The PA
and DA phonon mechanisms make equal contributions to the
rate at densities n = 5.0 × 1011 cm−2 (cf. top left panel). In
this regime, τ1(ε) is independent of ε − εF and the relative
PA and DA contribution can be tuned by changing solely the
density n. At intermediate temperatures, the relaxation shows a
crossover from the T -independent to the linear-T regime. The
total rate depending on n and T can be dominated either by PA
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FIG. 1. (Color online) The electron momentum relaxation rate
1/τ s

1 (εk) as a function of T for different values of the energy and den-
sity. The dashed and dotted lines correspond to the extrinsic PA and in-
trinsic DA phonon scattering mechanisms. The solid curve is the total
rate. Four different situations are presented: (top, left) εk − εF = 3 K
and n = 0.5 × 1012 cm−2, (top, right) εk − εF = 3 K and n = 10 ×
1012 cm−2, (bottom, left) εk − εF = 15 K and n = 1.0 × 1012 cm−2,
and (bottom, right) εk − εF = 30 K and n = 0.1 × 1012 cm−2.

phonon scattering with the T 3 behavior for smaller values of n

or by DA phonon scattering with the stronger T 4 dependence
for higher values of n (cf. top right panel).

In Fig. 2, we plot the exponents α(n,T ) and β(n,T )
that describe the mobility μs ∝ T −α(n,T ) and μs ∝ nβ(n,T ).
It is seen that the temperature and density behavior of the
mobility calculated numerically for PA and DA scattering
is in agreement with the above analytical findings. For any
value of n, the T −1 and T −4 dependence of the mobility,
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FIG. 2. The exponents α(n,T ) (top panels) and β(n,T ) (bottom
panels) describing the mobility behavior μs ∝ T −α(n,T ) and μs ∝
nβ(n,T ) as a function of T and n. The panels on the left- and right-hand
sides depict, respectively, the PA and DA phonon limited mobilities
μPA and μDA.
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FIG. 3. (Color online) (Left) The mobility ratio μPA/μDA and
(right) the total mobility μ = μPAμDA/(μPA + μDA) versus T . The
solid, dashed, and dotted curves correspond to the electron density
n = 10, 5, and 2 × 1011 cm−2. In the right panel, the curves in each set
are calculated in three approximations for the PA phonon potential.
The lower curves refer to the (q̂x q̂x)2 ≈ 1

4 and d = 0 approximation,
the middle curves take into account the angle dependence of the
PA vertex with d = 0, the upper curves include both the effect of
anisotropy and of the finite distance with d = 5 Å.

respectively, for PA and DA phonon scattering, occurs in a
wider temperature range than the T −1 and T −3 dependencies
for DA and PA scattering. Such a reversed behavior stems from
the substantial difference of the sound velocity in GaAs and
graphene and can be used to distinguish between the extrinsic
PA and extrinsic DA mechanisms of the momentum relaxation.
As seen in the bottom panels in Fig. 2, at low T the exponent
β(n,T ) ≈ 1

2 for both the PA and DA mechanisms. With an
increase of T , the PA contribution to the mobility shows a
crossover to the behavior with β(n,T ) ≈ − 1

2 , while the DA
contribution to the behavior with β(n,T ) ≈ −1.

In Fig. 3, we show the T dependence of the relative and
combined contributions to the mobility made by PA and DA
phonon scattering for different values of n. As seen in the left
panel at densities n < 5 × 1011 cm−2, the ratio μPA/μDA < 1
and PA phonon scattering is the dominant mechanism, limiting
the mobility both at low and high temperatures. The right
panel shows the total mobility versus T , which we obtain
applying the Matthiessen rule 1/μ = 1/μPA + 1/μDA. Here,
we calculate the PA contribution to the mobility including both
the angle dependence of the piezoelectric potential and the
finite distance d between the graphene sheet and the substrate.
The comparison of the upper thick curves with the lower two
curves in each set of lines shows explicitly that these effects
are weak.

V. CONCLUSIONS

In conclusion, the piezoelectric potential of acoustical
phonons propagating on the surface of a GaAs substrate is
an important factor limiting the mobility of Dirac fermions.
At low densities, PA phonon scattering is the dominant
momentum relaxation mechanism in graphene. At high tem-
peratures, it changes qualitatively the density dependence of
the mobility, while in the Bloch-Grüneisen regime it modifies
the power-law dependence on temperature. Experimentally,
the new power-law T dependence of the relaxation rate induced
by PA phonons can be measured in pure samples at low
temperatures T � T DA

BG . At higher temperatures, instead of
the usual power-law T dependence, experimentalists should
detect the persistent linear-T regime, generated by PA phonon
scattering, up to temperatures much lower than the scale T DA

BG
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induced by DA phonons. The other important manifestation of
this new PA relaxation channel, relevant to experiment, should
be the predicted crossover in the density dependence of the
mobility in the high-T regime, which is attainable for realistic
parameters in present-day graphene-GaAs heterostructures.33
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