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Ginzburg-Landau theory for multiband superconductors: Microscopic derivation
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A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed
in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard
Gor’kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This
reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions
but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a
three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the
coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken
time-reversal symmetry.
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I. INTRODUCTION

Studies of multiband (or multigap) superconducting sys-
tems, where more then one carrier band contributes to the for-
mation of the condensate, have now more than a half-century
history.1–4 In the last decade, clear experimental evidences
of multigap condensates were observed in a rich variety of
materials such as magnesium diboride,5 oxypnictides,6 iron
arsenides,7 and iron pnictides.8 The string of discoveries con-
tinues today so that the number of multiband superconductors
increases almost yearly.

There are different physical mechanisms responsible for
the formation of multiple carrier bands. For example, in
bulk specimens, the multigap structure can be related to the
appearance of separate pockets in the Fermi surface centered
around some points of the Brillouin zone. However, it was
recently shown that multiband superconductivity can also arise
in nanoscale specimens (e.g., in nanofilms) made of ordinary
single-band superconducting materials, where the geometrical
size quantization creates distinct carrier subbands.9 These
and similar findings broadened the interest in the physics of
multiband coherent phenomena, and that interest has given a
strong impetus to theoretical investigations. One of the focal
points of such investigations is revisiting long-established and
widely used theoretical models and methods in superconduc-
tivity in the context of multiband superconductors. One of
such methods is the Ginzburg-Landau (GL) theory,10 which is
commonly regarded as one of the most general and yet simple
approaches for conventional single-band superconductors.
Surprisingly, the generalization of the GL theory to the
multiband case is still a highly debated issue.

On the microscopic level, a multiband superconductor
is modeled by the multiband generalization of the BCS
theory.1,2 The corresponding GL equations are derived using
a straightforward application of the original single-band
recipe by Gor’kov11 (see, e.g., Refs. 12 and 13). In this
approach, superconducting gap functions in each carrier band,
hereafter referred to as band gaps, are regarded as the order
parameters. Similarly to the single-band case, the anomalous
Green’s function of each band is expanded in powers of the
corresponding band gap and its spatial gradients,11 and then

the expansion is truncated to keep the same terms as in the
single-band GL theory. This procedure yields a system of
nonlinear GL-type equations, one for each band gap, coupled
via the linear Josephson-type terms, and the corresponding
multicomponent functional. This is often referred to as the
multicomponent GL model and is widely used in the analysis
of multiband superconductors.12–22

Although this formulation of the GL theory appears intu-
itively justified, partially by a familiar structure of the obtained
equations, it possesses several fundamental inconsistencies.
First, it has to be reconciled with the phenomenological Landau
theory of phase transitions, according to which the order
parameter must be associated with a particular irreducible
representation of the relevant symmetry group. Following this
prescription, Volovik and Gor’kov developed a classification
of the exotic superconducting phases within the GL theory23

(a systematic classification of the GL theories based on the
symmetry analysis can be found in Ref. 24). It is important that
the number of independent order parameters in the GL theory,
given by the dimensionality of the irreducible representation,
is typically lower then the number of bands, which is certainly
different from the multicomponent model mentioned above.

Second, the analysis of the multicomponent GL model pre-
sented by Geilikman, Zaitsev, and Kresin3,4 and more recently
by Kogan and Schmalian26 revealed another inconsistency: the
accuracy of a solution to the formalism exceeds the accuracy
of its derivation. This discrepancy is intrinsic in the multiband
generalization of the Gor’kov procedure and can only be elim-
inated by invoking an additional truncating reconstruction,
which removes the artificial higher-order contributions.3,4,26–28

Without additional symmetries, such reconstruction yields
a strict proportionality of all band gaps, i.e., the GL theory has
a single order parameter. This conclusion agrees with the phe-
nomenological classification that predicts a single-component
GL theory in this case. (Deviations from this result appear only
in higher-order corrections to the ordinary GL theory.27–29)

This analysis did not consider the case of a degenerate
solution for Tc which appears due to an additional symmetry
of the system. Furthermore, the calculations in Ref. 3 for
an arbitrary number of bands employed a rather restrictive
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ansatz for the band gaps, while Refs. 26 and 27 utilized the
separability specific to the two-band case. The microscopic
derivation of the multiband GL theory has not been yet
achieved in the general case. Notice that a mechanical merge of
the symmetry analysis with the Gor’kov truncating procedure,
in which the outcome of the Gor’kov procedure is simply
rewritten in terms of the basis states of the relevant symmetry
group representations, does not solve the problem. It yields a
mixture of different irreducible representations, which should
not happen in the standard GL formalism.25

In this work, we derive the reconstructed (true) GL
theory from the microscopic Hamiltonian for a multiband
superconductor in a general case with an arbitrary number
of bands as well as with an arbitrary symmetry (reflected
in the degeneracy of the solution for Tc). The origin of the
symmetry is not important here. We note that it can appear not
only due to the lattice structure of the material, as discussed
in Refs. 23 and 24, but also due to other reasons, e.g., the
geometrical shape of the sample as in superconducting single-
crystalline nanofilms.30 A detailed analysis of the obtained
equations is then performed for the three-band system treated
as a prototype of a multiband superconductor. In particular,
we consider a simple three-band model of pnictides with
dominant interband couplings which allows for the twofold
degeneracy of the solution for Tc. We demonstrate that in full
agreement with the phenomenological GL theory, this system
has two order parameters, related to the two-dimensional
irreducible representation of the relevant symmetry group.
However, unlike the phenomenological analysis based on the
symmetry consideration, the derivation from the microscopic
theory offers the explicit expressions for the coefficients of
the GL theory. These expressions are highly nontrivial in
the case of multiband superconductors because they contain
important information about contributions of different bands
that can not be obtained from the symmetry arguments.31 The
corresponding ground state of the system is found to be a chiral
state with a nontrivial phase difference between the band gaps.
Such states in multigap superconductors have attracted much
interest18–20,22 as they could lead to unconventional phenom-
ena such as the formation of antiferromagnetic domains or
noninteger vortices (see, e.g., Ref. 24). Notice that this work
does not go beyond the standard GL domain (i.e., band gaps are
proportional to τ 1/2, with τ = 1 − T/Tc the proximity to the
critical temperature). An extended version of the multiband
GL theory with the proper higher-order contributions to the
band gaps will be published elsewhere.

The paper is organized as follows. In Sec. II, the GL theory
for multiband superconductors is derived starting from the
standard multiband BCS model. The derivation is performed in
three steps: (i) the truncated multiband gap equation is obtained
in matrix form by following the Gor’kov procedure adapted for
the case of multiple bands, (ii) the truncating reconstruction is
then applied by invoking the τ expansion, and (iii) an explicit
form of the resulting GL equations is obtained by keeping
the terms of order τ 1/2 in the band gaps. In Sec. III, we
recast the final formalism in a more explicit form, for both the
nondegenerate and degenerate cases. In Sec. IV, we consider a
three-band model for which expressions for the coefficients
of the GL equations can be calculated analytically for an
arbitrary interaction matrix. Then, we investigate the case of

a degenerate solution for Tc for a simple variant of the model
with strong interband couplings and demonstrate analytically
that the degeneracy in this model leads to the chiral ground
state. Our summary and conclusions can be found in Sec. V.

II. DERIVATION OF THE GL THEORY

A. Truncated gap equation

Following Gor’kov,11 the GL theory is usually derived from
the gap self-consistency equation, using an expansion of the
anomalous Green’s function in powers of the order parameter
and its spatial derivatives. We outline this derivation for mul-
tiple bands, starting from the multiband BCS Hamiltonian1,2

with the s-wave singlet pairing, which reads as

HBCS = Hc +
∑

i

∫
d3r

[∑
σ

ψ̂
†
iσ (r) Ti(r)ψ̂iσ (r)

+ ψ̂
†
i↑(r) ψ̂

†
i↓(r) �i(r) + H.c.

]
, (1)

where i enumerates different bands, ψ̂iσ (r) and ψ̂
†
iσ (r) are the

carrier field operators, �i(r) are the band-gap functions, or
simply band gaps, Hc is the c-number term (see, e.g., Ref. 13),
and Ti(r) stands for the single-electron energy. Equation (1) is
accompanied by the self-consistency gap equation

�� = ǧ �R, (2)

where we introduce ǧ, the matrix of the coupling constants gij ,
and use the vector notations ��T = (�1,�2, . . .) and �RT =
(R1,R2, . . .), with Ri = 〈ψ̂i↑(r)ψ̂i↓(r)〉 being the anomalous
Green’s function of the ith band.32

Using Eq. (1), we expand the anomalous Green’s functions
in the vicinity of Tc into a series in powers of the band gaps and
their spatial gradients. As the Hamiltonian (1) is diagonal over
the band index, the series is obtained independently for each
band yielding the same expressions as in the single-band case.
Referring interested readers to the original calculations,11 here
we quote the well-known final expansion for Ri , where only
the leading nonlinear and gradient terms are retained:

Ri[�i] � Ni(0)A�i + �i[�i], (3)

where Ni(0) is the band density of states (DOS), A =
ln( 2e�h̄ωc

πTc
), and

�i[�i] = −ai�i − bi |�i |2�i + Ki∇2�i. (4)

In Eqs. (3) and (4), ωc is the cutoff frequency, � = 0.577 is
the Euler constant, and the coefficients are calculated as

ai = −Ni(0)τ, bi = Ni(0)
7ζ (3)

8π2T 2
c

, Ki = bi

6
h̄2v2

i , (5)

with ζ (. . .) the Riemann zeta function and vi the band Fermi
velocity. Although here only results for the clean limit are
quoted, we note that the structure of the equations will be the
same for dirty systems, as is usually the case in the standard
GL formalism.33

We note that the magnetic field is not included in Eq. (4).
The generalization to the nonzero-field case is trivial and will
be done on a later stage by using the standard prescription of
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inserting the gauge-invariant gradient D = ∇ − i 2e
h̄c

A, where
A is the vector potential. One should remember, however, that
this recipe is valid exclusively for the standard GL domain
when only terms of order τ 1/2 are kept in the gap functions. A
more involved and complex procedure is needed when higher-
order corrections to the band gaps are incorporated.29

Substituting Eq. (3) into Eq. (2), we obtain the following
system of coupled equations:

(Ai + ai)�i + bi�i |�i |2 − Ki∇2�i +
∑
j �=i

γij�j = 0,

(6)

where γij is the element of the inverted interaction matrix ǧ−1

and the constants Ai are defined as

Ai = γii − Ni(0)A. (7)

The truncated equations given by Eg. (6) are commonly
referred to as a generalization of the GL theory to the multiband
case, or the multicomponent GL theory. This interpretation is
suggestive, especially given that in the limit of zero interband
couplings Eq. (6) yields N uncoupled GL equations for �i’s
that are the true Landau order parameters for the uncoupled
bands. Thus, the coupling is commonly assumed to be a
weak perturbation that does not significantly alter this physical
picture.

However, already this trivial limit highlights shortcomings
of the interpretation of Eq. (6) as a consistent multiband GL
formalism. In the absence of coupling, each band has its own
critical temperature Tci , while Tc of the entire system is the
largest of those. In the vicinity of Tc, which is the usual validity
domain of the GL theory, only the band with Tci = Tc develops
a superconductive state and, therefore, the system is in fact
described by a single-band GL theory with the single order
parameter (here we assume that Tci’s are well separated).
One can also imagine a degenerate situation when M � N

gaps have the same largest critical temperature Tc. Here, in
the zero-coupling limit, the system is described by the theory
with M � N order parameters corresponding to M uncoupled
components. Thus, in the zero interband-coupling limit, the
GL theory always has fewer active order parameters than the
number of the available bands. This conclusion is of course
trivial in the noninteracting case. However, in what follows,
we demonstrate that it holds also in the general case of a
nonzero coupling within the accuracy of the GL approach.

B. Reconstructed GL theory

Deriving the GL theory for the general case of nonzero
interband interactions starts by noting that, as discussed in the
Introduction, Eq. (6) is inconsistent because the accuracy of
its solution exceeds the accuracy of its derivation. One can see
this (details can be found in Refs. 3, 4, and 26–28) by taking
into account that the coefficients Ai + ai and γij are not zero
in the limit τ → 0 (T → Tc). This implies that a solution
to Eq. (6), when being expanded in τ , comprises terms of
arbitrarily high orders, i.e., all �i’s are given by infinite series
in powers τn+1/2, with integer n. At the same time, the Gor’kov
truncation neglects terms that contribute to orders higher than
τ 1/2 in the band-gap functions. The only situation when this
inconsistency does not happen is the single-band GL theory

where the coefficient of the linear term in the GL equation
is proportional to τ and, as a result, the solution comprises a
single contribution of order τ 1/2.

In order to reconcile the accuracy of a solution for �i

with the accuracy of the derivation of Eq. (6), we use the
reconstruction procedure that abandons incomplete higher-
order contributions from the band gaps. This procedure is
nothing more than a systematic perturbation expansion in τ ,
which gives the GL theory and its corrections in a systematic
way.29 Following this procedure, the solution to Eq. (6) is
sought in the form of a series in odd powers of τ 1/2 as

�i = �
(0)
i + �

(1)
i + O(τ 5/2), (8)

where �
(0)
i ∝ τ 1/2 and �

(1)
i ∝ τ 3/2. This series is inserted into

Eq. (6) and then the terms of the same order are collected. A
simple power counting shows that making a solution to Eq. (6)
consistent with the Gor’kov truncation, one should keep the
two lowest orders in the resulting τ expansion of Eq. (6) and
the leading order term ∝ τ 1/2 in Eq. (8).

Notice that one must also take into account that spatial
derivatives of the difference δ�i = �i − �

(0)
i do not con-

tribute to these lowest orders. In an earlier consideration3 it
was assumed that δ�i is independent of the coordinates [see
Eq. (14) in Ref. 4]. Subsequent works27–29 have demonstrated
that such a restrictive ansatz is not needed. The GL theory
introduces the coherence length ξ ∝ τ−1/2 so that all spatial
derivatives of all contributing terms in the band gaps scale as
∝ τ 1/2. In other words, each gradient operator ∇ introduces a
factor ∝ τ 1/2. Counting powers of τ in the expansion confirms
that the higher-order gradients of �

(0)
i as well as the lowest

gradients of δ�i do not contribute into the two lowest orders
of the τ expansion of Eq. (6).

Substituting Eq. (8) into Eq. (6) and collecting the terms
of order τ 1/2, we obtain the first equation in the reconstructed
theory

Ľ ��(0) = 0, (9)

where elements of matrix Ľ are written as

Lij = δijAi + (1 − δij )γij (10)

with δij being the Kronecker symbol. The condition of
solvability of Eq. (9),

detĽ = 0, (11)

is the equation for the critical temperature Tc that generally has
N solutions. Clearly, one has to choose the solution with the
maximal Tc as it yields the minimal value of the free energy.
Equation (9) is commonly referred to as the linearized gap
equation as it can also be obtained by simply neglecting all the
nonlinear contributions in Eq. (6).

When N > 2, one may encounter a situation with M < N

degenerate solutions to Eq. (11) that correspond to the same
maximal value of Tc. In this case, the matrix Ľ has M

eigenvectors ξα , with α = 1, . . . ,M , corresponding to the zero
eigenvalue of Ľ at T = Tc. Without loss of generality, these
eigenvectors can be chosen orthogonal, and their normalization
is not important.

A general solution to Eq. (9) is then represented as a sum of
M terms (M = 1 is for the nondegenerate case), one for each
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eigenvector, as

��(0)(r) =
∑

α

ψα(r)�ξα. (12)

Here, M functions ψα are specified by the equation that is
obtained from Eq. (6) by matching terms of order τ 3/2 as

Ľ ��(1) = ��[ ��(0)], (13)

where the components �i[�
(0)
i ] of ��[ ��(0)] are given by Eq. (4)

with �i replaced by �
(0)
i . A closed set of M equations for ψα(r)

is derived by projecting Eq. (13) to the eigenvectors �ξα , which
yields M equations given by∑

i

ξαi�i

[
�

(0)
i

] = 0, (14)

where ξαi is the ith component of �ξα .

III. EXPLICIT FORM OF THE GL EQUATIONS

A. Nondegenerate case

Here, we recast Eq. (14) in a more explicit and familiar
form. In the nondegenerate case, a single function ψ(r) ≡
ψ1(r) controls the same spatial profile of all band condensates.
Rewriting Eq. (14) for ψ(r) one obtains

aψ + b|ψ |2ψ − KD2ψ = 0, (15)

where we include a nonzero magnetic field by replacing
∇ → D. The coefficients a, b, and K in Eq. (15) are given by

a =
∑

i

aiξ
2
i , b =

∑
i

biξ
4
i , K =

∑
i

Kiξ
2
i , (16)

where ξi is the band component of �ξ ≡ �ξ1. The corresponding
free-energy functional reads as

F =
∫

d3r

[
a|ψ |2 + b

2
|ψ |4 + K|Dψ |2 + B2

8π

]
. (17)

Using this functional, one derives the accompanying Maxwell
equation for the gauge field in the form

1

4π
rotB = i

2e

h̄c
K

(
ψD∗ψ∗ − ψ∗Dψ

)
. (18)

As seen, Eqs. (15), (17), and (18) have the form of the
ordinary single-band GL theory. In fact, however, this is an
effectively single-band GL theory as the coefficients a, b, and
K comprise contributions of all bands. It is also important to
remember that ψ itself can not be interpreted as an excitation
gap: it is related to the band-gap functions via Eq. (12).

The single-band representation of the reconstructed GL
theory allows one to define the characteristic lengths of a
multiband superconductor in a unique way. In particular, the
coherence length ξ , the magnetic penetration depth λ, and their
ratio κ are given by the standard GL expressions as

ξ =
√

K
|a| , λ = h̄c

|e|

√
b

32πK|a| , κ = �0

√
b

32π3K2
,

(19)

where �0 is the flux quantum. However, the multiband origin
of Eqs. (15)–(18) is still reflected in some properties of

the system. For example, following Eqs. (16) and (19), one
concludes that b,K can be roughly estimated as linearly
proportional to N . Taking into account the relation κ ∝√

b/K2 one arrives at the trend κ ∼ 1/
√

N , which means
that a multiband superconductor should approach the type-I
character when the number of bands is large enough.

B. Degenerate case

When the maximal solution to Eq. (11) is degenerate, i.e.,
M > 1, Eq. (12) yields a set of coupled nonlinear equations,
an explicit form of which is obtained as∑

β

(aαβ − KαβD2)ψβ +
∑
βγ δ

bαβγ δ ψβψ∗
γ ψδ = 0, (20)

where the coefficients are defined as

aαβ =
∑

i

aiξαiξβi, Kαβ =
∑

i

Kiξαiξβi,

(21)
bαβγ δ =

∑
i

biξαiξβiξγ iξδi .

The corresponding free-energy functional is now obtained
in the form

F =
∫

d3r

[ ∑
αβ

(
aαβψ∗

αψβ + KαβD∗ψ∗
α Dψβ

)

+ 1

2

∑
αβγ δ

bαβγ δ ψ∗
α ψβ ψ∗

γ ψδ + B2

8π

]
. (22)

By calculating the functional derivative with respect to the
vector potential, we obtain from Eq. (22) the accompanying
Maxwell equation as

1

4π
rotB = i

2e

h̄c

∑
αβ

Kαβ(ψαD∗ψ∗
β − ψ∗

βDψα). (23)

The number of components in the reconstructed GL theory
is 1 � M < N , unlike in the original system of equations
given by Eq. (6). Another important difference is that all
coefficients of the linear terms in the reconstructed GL theory
are now proportional to τ , which dictates that ψα ∝ τ 1/2. This
eliminates the problem of the mismatch between the accuracy
of the solutions and equations, which was the reason to seek
the reconstruction.

Notice that the reconstructed GL formalism, obtained here
by the τ expansion, recovers the standard Landau theory
of phase transitions. In particular, the degeneracy of the
linearized gap equation is related to an extra symmetry
between bands, hidden in the relevant coupling matrix. The
degree of degeneracy M is defined by the dimensionality of
the corresponding irreducible representation with the M basis
vectors ξα’s. Equation (22) is interpreted as the Landau free-
energy functional with ψα’s being Landau order parameters.
The reconstruction can thus be regarded as the procedure
of finding the true Landau order parameter of the system,
in the form of linear combinations of the band gaps [see
Eq. (12)]. However, Eqs. (17) and (22) are derived by matching
all relevant terms in the τ expansion, rather than through
the phenomenological approach based on the group-theory
analysis.24
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In agreement with the Landau recipe, the reconstructed GL
theory is based on a single irreducible representation. However,
if one continues the τ expansion to next orders, admixtures of
other irreducible representations will appear in the formalism.
Within the symmetry analysis, it is often argued that such
terms should arise because the appearance of the condensate
at T < Tc already changes the symmetry of the system.24 The
reconstruction yields a clear quantitative estimate for such
admixtures. It is easy to see from Eq. (8) that the order
parameters related to extra irreducible representations will be
of order τ 3/2 and higher, which must be neglected in the present
analysis concerning the standard GL formalism.

IV. THREE-BAND SYSTEM

A. Eigenvectors

As a prototype of multiband superconductors, we now
consider a physically relevant case of a three-band system,
the analysis of which can be done in the analytical form. In
order to obtain the eigenvectors ξα , we write Eq. (9) as a system
of linear algebraic equations

Ai�
(0)
i +

∑
j �=i

γij�
(0)
j = 0. (24)

It is easy to verify that the following relations hold:

η1�
(0)
1 = η2�

(0)
2 = η3�

(0)
3 , (25)

where

η1 = A1γ23 − γ12γ13, η2 = A2γ13 − γ12γ23,
(26)

η3 = A3γ12 − γ13γ23,

and Ai is defined by Eq. (7).
We now investigate the following possibilities. Let us first

assume that η1,η2,η3 �= 0. Then, from Eq. (25) we immediately
find that

ξi ∝ 1/ηi, (27)

which implies that the gaps in all three bands are nonzero.
When one of the ηi’s is zero, say η1 = 0, then Eq. (25) dictates
that �

(0)
2 = �

(0)
3 = 0, and therefore the condensate is formed

only in one band. When two of the ηi’s vanish, the gap is
nonzero in the corresponding two bands. In all these cases, we
deal with the nondegenerate scenario governed by the single-
component GL equation (15) with the coefficients given by
Eq. (16). However, the eigenvector �ξ , whose band components
appear in Eq. (16), is dependent on a particular situation.
As mentioned above, for η1,η2,η3 �= 0 we obtain Eq. (27),
whereas for, say, η1 = η2 = 0 we have �ξ T = (1, − γ13/γ23,0).

The case when all ηi’s are equal to zero requires a bit more
algebra. Expressing Ai in terms of γij from Eq. (26) and then
inserting the result into Eq. (24), we find that in this case
Eqs. (24) are reduced to a single equation that reads as

γ12γ13�
(0)
1 + γ12γ23�

(0)
2 + γ13γ23�

(0)
3 = 0. (28)

A general solution to Eq. (28) can be written as

��(0)(r) = ϑ1(r)�u1 + ϑ2(r)�u2, (29)

where

�u1 =

⎛
⎜⎝

0

−γ13/γ12

1

⎞
⎟⎠ , �u2 =

⎛
⎜⎝

1

−γ13/γ23

0

⎞
⎟⎠ (30)

are linearly independent and ϑ1,2(r) are unknown functions
to be specified later. Comparing Eq. (29) with Eq. (12), we
conclude that this case represents the degenerate scenario
with M = 2. Equation (29) can be rewritten in terms of two
orthogonal eigenvectors �ξ1,2 by applying the orthogonalization
procedure to �u1,2, which gives

�ξ1 = �u1, �ξ2 = �u2 − γ 2
13γ12(

γ 2
12 + γ 2

13

)
γ23

�u1. (31)

One can then express the functions ϑ1,2 through ψ1,2 intro-
duced earlier as ϑ1(r) = ψ1(r) − γ 2

13γ12/[(γ 2
12 + γ 2

13)γ23]ψ2(r)
and ϑ2(r) = ψ2(r). The band gaps are then defined by the two
Landau order parameters ψ1,2 according to

�
(0)
1 = ψ2,

�
(0)
2 = −γ13

γ12
ψ1 − γ 2

12γ13(
γ 2

13 + γ 2
12

)
γ23

ψ2, (32)

�
(0)
3 = ψ1 − γ 2

13γ12(
γ 2

13 + γ 2
12

)
γ23

ψ2.

Finally, we note that the derivation of Eqs. (28)–(32)
assumes that γ12,γ13,γ23 �= 0. If some of these interband
couplings are zero while η1 = η2 = η3 = 0, the problem
reduces to a trivial example of the nondegenerate case where
some of the available bands are uncoupled.

B. Chiral state with phase frustration

Under certain conditions, the ground state of a three-band
superconductor may develop a nontrivial phase difference be-
tween different band gaps, referred to as the state with the phase
frustration or the chiral solution. This state is of a particular
interest as it breaks the time-reversal invariance in the system,
leading to many unconventional superconducting properties.24

Following, we analytically demonstrate the possibility of such
a state in the three-band system within the simple variant
of the model with strong interband couplings, i.e., gii = 0
and gi �=j > 0 and N1(0) = N2(0) = N3(0). Our analytical
consideration complements numerical investigations in the
recent Ref. 18. Such a model describes an interesting example
of a system where the superconducting pairing is caused by
the interband coupling and, as it is believed, may be relevant
for pnictides.18 We are interested in the special case when
different interband couplings are equal to one another, which
may be dictated by some symmetry between bands25 but is not
necessarily limited to only this physical situation. Please note
that many different combinations of intraband and interband
couplings can lead to a degeneracy of Tc and possible phase
frustration (see, e.g., Ref. 22). However, in the absence of
physical justifications for such coupling matrices, we refrain
from their analysis.

Using the orthogonality conditions for �ξα’s and the fact that
the band DOS’s are equal, we obtain a12 = a21 = 0 in Eq. (20).
Furthermore, it is obvious that the tensor bαβγ δ is symmetric
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with respect to the permutation of each pair of the indices so
that it is convenient to introduce new notations

β1 = b1111, β2 = b1112 = b1121 = b1211 = b2111,

β3 = b1122 = b1212 = b2112 = b2121 = b1221 = b2211, (33)

β4 = b1222 = b2122 = b2212 = b2221, β5 = b2222.

Then, for a homogeneous case without a magnetic field,
Eq. (20) yields

α1 = −β1|ψ1|2 − β2(2ψ∗
1 ψ2 + ψ1ψ

∗
2 )

−β3

(
2|ψ2|2 + ψ2

2
ψ∗

1

ψ1

)
− β4|ψ2|2 ψ2

ψ1
, (34a)

α2 = −β2|ψ1|2 ψ1

ψ2
− β3

(
2|ψ1|2 + ψ2

1
ψ∗

2

ψ2

)
−β4(2ψ1ψ

∗
2 + ψ∗

1 ψ2) − β5|ψ2|2, (34b)

where we also denote α1 = a11, α2 = a22. As usual, it is
convenient to search for a solution to Eq. (34) in the form
ψi = |ψi | exp(iφi). Then, matching the imaginary parts in
Eq. (34a) [or in Eq. (34b), which gives the same result], we
obtain

[β2r + 2β3 cos(δφ) + β4r
−1] sin(δφ) = 0, (35a)

where the notations δφ = φ2 − φ1 and r = |ψ1|/|ψ2| are
introduced. Matching the real parts in Eqs. (34a) and (34b)
yields, respectively,

− α1

|ψ1|2 = β1 + (3β2 + β4r
−2)r−1 cos(δφ)

+β3r
−2[2 + cos(2δφ)], (35b)

− α2

|ψ1|2 = (β2r + 3β4r
−1) cos(δφ)

+β3[2 + cos(2δφ)] + β5r
−2. (35c)

To check the thermodynamic stability of different solutions
to Eqs. (35), one needs to calculate the free energy from
the functional in Eq. (22). It can be rewritten, using the new
notations, as

F =
∫

d3r

{
|ψ1|2(α1 + α2 r−2) + 1

2
|ψ1|4

× (β1 + 4 cos(δφ)r−1(β2 + β4r
−2)

+ 2β3r
−2[2 + cos(2δφ)] + β5r

−4)

}
. (36)

To proceed further, we substitute the chosen model pa-
rameters into the obtained equations. Inverting the coupling
matrix yields γii = −1/(2g) and γi �=j = 1/(2g). Then, using
Eq. (31), we obtain the eigenvectors as �ξ T

1 = (0, − 1,1) and
�ξ T

2 = (2, − 1, − 1), where �ξ2 is now multiplied by 2 for the
sake of convenience of our further calculations. Substituting
these eigenvectors into Eq. (21), we find

α1 = 2ã, α2 = 6ã, β1 = 2b̃, β2 = 0,
(37)

β3 = 2b̃, β4 = 0, β5 = 18b̃,

where ã = a1 = a2 = a3 and b̃ = b1 = b2 = b3, and ai and bi

are given by Eq. (5). Finally, based on Eq. (37), we can rewrite

Eq. (35a) as

sin(2δφ) = 0, (38)

which yields the obvious solution for the phase difference
δφ = πn/2, with n being integer.

One can identify two solution classes. The first one is
given by δφ = 0,π,2π, . . . at which cos(2δφ) = 1. Here, a
sign difference can occur between the band components but
there is no nontrivial phase difference. In this case, Eqs. (35b)
and (35c) are reduced to

|ψ1|2 = |ã|/[b̃ (1 + 3r−2)]. (39)

The complete homogeneous solution for the band gaps is then
given by

��(0) =
√

|ã|
b̃(3 + r2)

⎛
⎜⎝

2

−r − 1

r − 1

⎞
⎟⎠ , (40)

where r = |ψ1|/|ψ2| serves as a parameter. The corresponding
free-energy density f = F/V is obtained as

f = −ã2/b̃. (41)

Notice that since Eq. (41) does not depend on r , this quantity
is not fixed and therefore we obtain a continuous family of
solutions with the same free-energy density.

The second solution class is obtained when n is odd,
i.e., δφ = π/2,3π/2, . . . and cos(2δφ) = −1. In this case,
Eqs. (35b) and (35c) yield the system of two equations

−ã/|ψ1|2 = b̃ (1 + r−2), (42a)

−3ã/|ψ1|2 = b̃ (1 + 9r−2). (42b)

This system is solved trivially giving |ψ1|2 = 3ã/(4b̃) and
r = √

3. Then, using Eqs. (42) and taking δφ = π/2,5π/2, . . .

and δφ = 3π/2,7π/2, . . ., we obtain two different solutions
as

��(0) = i

√ |ã|
b̃

⎛
⎜⎝

1

ei2π/3

e−i2π/3

⎞
⎟⎠ ; −i

√ |ã|
b̃

⎛
⎜⎝

1

e−i2π/3

ei2π/3

⎞
⎟⎠ . (43)

These are chiral solutions with a nontrivial phase difference
between the band gaps. The free-energy density for both of
them reads as

f = −3ã2/(2b̃). (44)

Comparing this with Eq. (41) reveals that the chiral solution
is more favorable energetically and thus the three-band model
with strong interband couplings supports the formation of the
chiral state.

This conclusion agrees with numerical simulations of
Eq. (6) for the three-band case,18 which showed that the chiral
state with the phase shifts ±2π/3 is found at T → Tc only
in the limit g23 → g12 = g13. The phase shift obtained in
our work is independent of temperature, which differs from
numerical simulations in Ref. 18. We note, however, that
these simulations employed the unreconstructed GL equations,
where a solution does not account for all relevant terms of the τ

expansion. A correct temperature dependence of the phase shift
must be calculated with the help of the extended multiband
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GL formalism that should be constructed in the spirit of the
approach in Ref. 28.

As already mentioned above, the appearance of the chiral
state may indicate the symmetry of the model, reflected in the
structure of the coupling matrix. In particular, the matrix inves-
tigated in this section can be realized by choosing the bands as
the pockets of the Fermi surface centered around X points of
the Brillouin zone of the fcc lattice (see Ref. 25). The band gaps
are then transformed according to a three-dimensional repre-
sentation of the Oh cubic symmetry group. This representation
splits into one-dimensional Ag and two-dimensional Eg irre-
ducible representations. The two-dimensional representation
Eg, which corresponds to the highest critical temperature, can
have its basis chosen as two vectors in Eq. (43). Constructing
the Landau theory from this irreducible representation, one
recovers the reconstructed GL formalism discussed above,
which additionally proves its validity.

Here, we stress that recasting the multicomponent GL the-
ory (6) in terms of the basis functions of the symmetry-group
representations does not eliminate admixtures of different
irreducible representations in the free-energy functional.25

However, following our analysis, such admixtures must be
neglected as they exceed the accuracy of the GL theory,
in full agreement with the standard Landau approach. The
proper accounting of the admixture terms can be done only by
employing the extended GL theory which collects all relevant
higher-order terms in the expansion of the band gaps.

Finally, as the chiral state is related to the degeneracy of a
solution for Tc that can be caused by, e.g., the crystalline sym-
metry, the existence of any simple relation between the chiral
state and signs of the interband couplings γi �=j , as suggested
in Refs. 20 and 22, appears to be very questionable at least in
the GL domain. Notice that this conclusion is also supported
by numerical investigations of Eqs. (6) performed in Ref. 18.

V. SUMMARY AND CONCLUSIONS

In this work, we have derived the consistent GL theory
from the multiband BCS Hamiltonian. The derivation applies
a reconstruction procedure to the conventional Gor’kov trun-
cation of the matrix gap equation. This reconstruction invokes
the expansion in powers of τ and removes incomplete contri-
butions to band gaps of orders higher than τ 1/2, thus matching
the accuracy of the gaps with that of the Gor’kov truncation.

When the solution for Tc is not degenerate, we recover
the earlier results of Refs. 3 and 26–28 that the GL theory
of a multiband superconductor maps onto a single-component
GL formalism in which the spatial profiles of all band gaps are
equivalent. However, this result is valid only in the standard GL
domain, i.e., to the accuracy �i ∝ τ 1/2. Difference between
the spatial profiles of the band gaps appears already in the
leading correction to the GL theory.27,28

If the solution for Tc is degenerate, which appears due to
a symmetry of the system, the GL theory acquires several
order parameters. We have carried out a detailed analysis
for the three-band system treated as a prototype of a multi-
band superconductor. For the simple three-band model of
pnictides with dominant interband couplings, the solution
for Tc is twofold degenerate and the GL theory has two
order parameters ψα which correspond to the two-dimensional
irreducible representation of the relevant symmetry group, in
full agreement with the Landau theory. We have shown that
the band energy gaps themselves can not be interpreted as the
Landau order parameters in a multiband superconductor due
to the Josephson-type coupling between bands.

Our approach yields explicit expressions for the coefficients
of the GL theory. Also, the formalism provides a solid basis
for further extensions of the theory and, in particular, offers the
correct way to account for the influence of other irreducible
representations not inherent in the ordinary GL approach.

Although it was not a purpose of our work to discuss the
origin of the degeneracy of Tc, it is worth noting that it does
not always appear due to the crystalline symmetry. It can
arise, e.g., in the atomically flat superconducting nanofilms,
where the size quantization of the perpendicular motion of
electrons results in the formation of multiple single-electron
subbands.9 Such superconducting nanofilms can be regarded
as effectively multiband superconductors with the interaction
matrix30 gij = g(1 + δij /2)/d, where d is the nanofilm thick-
ness and g is the coupling constant for the material of the
nanofilm. The structure of this matrix is similar to that of ǧ

investigated in Sec. IV B and, as a result, a degenerate solution
for Tc also appears in this case. The developed formalism
thus provides a general link between the multiband BCS
theory and the phenomenological Landau model for multiband
superconductors, irrespective of the origin of the symmetry.

We conclude by noting that the degenerate regime manifests
itself in several important physical consequences such as the
formation of the chiral ground state and the appearance of
different spatial length scales of the band condensates, which
can be observed even at T → Tc. This may result in a plethora
of new phenomena, i.e., fractional vortices,16 flux-carrying
topological solitons,17 and other exotic states.34 So far, those
phenomena have been studied using the unreconstructed
multicomponent GL model given by Eqs. (6), and so we
suggest revisiting these problems in the framework of the true
GL formalism.
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