toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muller-Caspary, K.; Krause, F.F.; Grieb, T.; Loffler, S.; Schowalter, M.; Béché, A.; Galioit, V.; Marquardt, D.; Zweck, J.; Schattschneider, P.; Verbeeck, J.; Rosenauer, A. pdf  url
doi  openurl
  Title Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (up) 178 Issue 178 Pages 62-80  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study sheds light on the prerequisites, possibilities, limitations and interpretation of high-resolution differential phase contrast (DPC) imaging in scanning transmission electron microscopy (STEM). We draw particular attention to the well-established DPC technique based on segmented annular detectors and its relation to recent developments based on pixelated detectors. These employ the expectation value of the momentum transfer as a reliable measure of the angular deflection of the STEM beam induced by an electric field in the specimen. The influence of scattering and propagation of electrons within the specimen is initially discussed separately and then treated in terms of a two-state channeling theory. A detailed simulation study of GaN is presented as a function of specimen thickness and bonding. It is found that bonding effects are rather detectable implicitly, e.g., by characteristics of the momentum flux in areas between the atoms than by directly mapping electric fields and charge densities. For strontium titanate, experimental charge densities are compared with simulations and discussed with respect to experimental artifacts such as scan noise. Finally, we consider practical issues such as figures of merit for spatial and momentum resolution, minimum electron dose, and the mapping of larger-scale, built-in electric fields by virtue of data averaged over a crystal unit cell. We find that the latter is possible for crystals with an inversion center. Concerning the optimal detector design, this study indicates that a sampling of 5mrad per pixel is sufficient in typical applications, corresponding to approximately 10x10 available pixels.  
  Address Institut fur Festkr perphysik, Universitat Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000403862900009 Publication Date 2016-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 93 Open Access  
  Notes K.M.-C. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) under contract MU3660/1-1. This work was further supported by the DFG under contract RO2057/4-2 and O2057/11-1. J.V. and A.B. acknowledge funding from the European Research Council (ERC) under the 7th Framework Program (FP7), and ERC Starting Grant No. 278510-VORTEX. Experimental results are obtained on the Qu-Ant-EM microscope partly funded by the Hercules fund from the Flemish government. J.V. also acknowledges funding through a GOA project “Solarpaint” of the University of Antwerp. SL and PS acknowledge financial support by the Austrian Science Fund (FWF) under grants No. I543-N20 and J3732-N27. ECASJO_; Approved Most recent IF: 2.843  
  Call Number c:irua:134125UA @ admin @ c:irua:134125 Serial 4098  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Krause, F.F.; Béché, A.; Verbeeck, J.; Rosenauer, A.; Van Aert, S. url  doi
openurl 
  Title Locating light and heavy atomic column positions with picometer precision using ISTEM Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (up) 172 Issue 172 Pages 75-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recently, imaging scanning transmission electron microscopy (ISTEM) has been proposed as a promising new technique combining the advantages of conventional TEM (CTEM) and STEM [1]. The ability to visualize light and heavy elements together makes it a particularly interesting new, spatially incoherent imaging mode. Here, we evaluate this technique in term of precision with which atomic column locations can be measured. By using statistical parameter estimation theory, we will show that these locations can be accurately measured with a precision in the picometer range. Furthermore, a quantitative comparison is made with HAADF STEM imaging to investigate the advantages of ISTEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390600200009 Publication Date 2016-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W. van den Bos. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the PbTiO3 test sample. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:136109UA @ admin @ c:irua:136109 Serial 4288  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J. url  doi
openurl 
  Title Theory and applications of free-electron vortex states Type A1 Journal article
  Year 2017 Publication Physics reports Abbreviated Journal Phys Rep  
  Volume (up) 690 Issue 690 Pages 1-70  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406169900001 Publication Date 2017-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.425 Times cited 210 Open Access OpenAccess  
  Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved Most recent IF: 17.425  
  Call Number EMAT @ emat @ c:irua:143262 Serial 4574  
Permanent link to this record
 

 
Author Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S. pdf  doi
openurl 
  Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
  Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume (up) 36 Issue 36 Pages 1900096  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477679400014 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
  Year 2019 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume (up) Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537721200002 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 8 Open Access  
  Notes The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305  
  Call Number EMAT @ emat @c:irua:165794 Serial 5445  
Permanent link to this record
 

 
Author Velazco, A.; Nord, M.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Evaluation of different rectangular scan strategies for STEM imaging Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (up) Issue Pages 113021  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract STEM imaging is typically performed by raster scanning a focused electron probe over a sample. Here we investigate and compare three different scan patterns, making use of a programmable scan engine that allows to arbitrarily set the sequence of probe positions that are consecutively visited on the sample. We compare the typical raster scan with a so-called ‘snake’ pattern where the scan direction is reversed after each row and a novel Hilbert scan pattern that changes scan direction rapidly and provides an homogeneous treatment of both scan directions. We experimentally evaluate the imaging performance on a single crystal test sample by varying dwell time and evaluating behaviour with respect to sample drift. We demonstrate the ability of the Hilbert scan pattern to more faithfully represent the high frequency content of the image in the presence of sample drift. It is also shown that Hilbert scanning provides reduced bias when measuring lattice parameters from the obtained scanned images while maintaining similar precision in both scan directions which is especially important when e.g. performing strain analysis. Compared to raster scanning with flyback correction, both snake and Hilbert scanning benefit from dose reduction as only small probe movement steps occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544042800007 Publication Date 2020-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 13 Open Access OpenAccess  
  Notes A.V., A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.N. received support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 838001. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. Approved Most recent IF: 2.2; 2020 IF: 2.843  
  Call Number EMAT @ emat @c:irua:169225 Serial 6369  
Permanent link to this record
 

 
Author MacArthur, K.E.; Yankovich, A.B.; Béché, A.; Luysberg, M.; Brown, H.G.; Findlay, S.D.; Heggen, M.; Allen, L.J. pdf  url
doi  openurl
  Title Optimizing Experimental Conditions for Accurate Quantitative Energy-Dispersive X-ray Analysis of Interfaces at the Atomic Scale Type A1 Journal article
  Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume (up) Issue Pages 1-15  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664532400007 Publication Date 2021-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Jürgen Schubert for helping to supply the sample and valuable discussions on the topic. K. E. MacArthur and M. Heggen acknowledge the Helmholtz Funding agency and the DFG (grant number HE 7192/1-2) for their financial support of this work. L. J. Allen acknowledges the support of the Alexander von Humboldt Foundation. This research was supported under the Discovery Projects funding scheme of the Australian Research Council (Projects DP140102538 and FT190100619). K.E. MacArthur, A.B. Yankovich and A. Béché acknowledge support from the European Union’s Horizon 2020 research innovation program under grant agreement No. 823717 – ESTEEM3. A.B. Yankovich also acknowledges support from the Materials Science Area of Advance at Chalmers and the Swedish Research Council (VR, under grant No: 2020-04986).; esteem3TA; esteem3reported Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @c:irua:178129 Serial 6760  
Permanent link to this record
 

 
Author Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H. url  doi
openurl 
  Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume (up) Issue Pages 116955  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670077800004 Publication Date 2021-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 27 Open Access OpenAccess  
  Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:178142 Serial 6761  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. doi  openurl
  Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169114 Serial 6865  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J. doi  openurl
  Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169135 Serial 6883  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. doi  openurl
  Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169112 Serial 6888  
Permanent link to this record
 

 
Author Jannis, D.; Velazco, A.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Reducing electron beam damage through alternative STEM scanning strategies, Part II: Attempt towards an empirical model describing the damage process Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume (up) Issue Pages 113568  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this second part of a series we attempt to construct an empirical model that can mimick all experimental observations made regarding the role of an alternative interleaved scan pattern in STEM imaging on the beam damage in a specific zeolite sample. We make use of a 2D diffusion model that describes the dissipation of the deposited beam energy in the sequence of probe positions that are visited during the scan pattern. The diffusion process allows for the concept of trying to ‘outrun’ the beam damage by carefully tuning the dwell time and distance between consecutively visited probe positions. We add a non linear function to include a threshold effect and evaluate the accumulated damage in each part of the image as a function of scan pattern details. Together, these ingredients are able to describe qualitatively all aspects of the experimental data and provide us with a model that could guide a further optimisation towards even lower beam damage without lowering the applied electron dose. We deliberately remain vague on what is diffusing here which avoids introducing too many sample specific details. This provides hope that the model can be applied also in sample classes that were not yet studied in such great detail by adjusting higher level parameters: a sample dependent diffusion constant and damage threshold.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832788000003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 4 Open Access OpenAccess  
  Notes D.J., A.V, A.B. and J.V. acknowledge funding from FWO project G093417N (’Compressed sensing enabling low dose imaging in transmission electron microscopy’) and G042920N (’Coincident event detection for advanced spectroscopy in transmission electron microscopy’). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 ESTEEM3. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from GOA project “Solarpaint” of the University of Antwerp .; esteem3reported; esteem3jra; Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:188535 Serial 7071  
Permanent link to this record
 

 
Author Vega Ibañez, F.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Can a programmable phase plate serve as an aberration corrector in the transmission electron microscope (TEM)? Type A1 Journal article
  Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume (up) Issue Pages Pii S1431927622012260-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Current progress in programmable electrostatic phase plates raises questions about their usefulness for specific applications. Here, we explore different designs for such phase plates with the specific goal of correcting spherical aberration in the transmission electron microscope (TEM). We numerically investigate whether a phase plate could provide down to 1 angstrom ngstrom spatial resolution on a conventional uncorrected TEM. Different design aspects (fill factor, pixel pattern, symmetry) were evaluated to understand their effect on the electron probe size and current density. Some proposed designs show a probe size () down to 0.66 angstrom, proving that it should be possible to correct spherical aberration well past the 1 angstrom limit using a programmable phase plate consisting of an array of electrostatic phase-shifting elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000849975400001 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.8 Times cited 3 Open Access OpenAccess  
  Notes All authors acknowledge funding from the Flemish Research Fund under contract G042820N “Exploring adaptive optics in transmission electron microscopy”. J.V. acknowledges funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3 and from the University of Antwerp through a TOP BOF project.; esteem3reported; esteem3jra Approved Most recent IF: 2.8  
  Call Number UA @ admin @ c:irua:190627 Serial 7134  
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A. pdf  url
doi  openurl
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 5 Issue Pages 5653  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347227700003 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 197 Open Access  
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166  
Permanent link to this record
 

 
Author Van den Broek, W.; Reed, B.W.; Béché, A.; Velazco, A.; Verbeeck, J.; Koch, C.T. pdf  doi
openurl 
  Title Various compressed sensing setups evaluated against Shannon sampling under constraint of constant illumination Type A1 Journal article
  Year 2019 Publication IEEE transactions on computational imaging Abbreviated Journal  
  Volume (up) 5 Issue 3 Pages 502-514  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Under the constraint of constant illumination, an information criterion is formulated for the Fisher information that compressed sensing measurements in optical and transmission electron microscopy contain about the underlying parameters. Since this approach requires prior knowledge of the signal's support in the sparse basis, we develop a heuristic quantity, the detective quantum efficiency (DQE), that tracks this information criterion well without this knowledge. In this paper, it is shown that for the investigated choice of sensing matrices, and in the absence of read-out noise, i.e., with only Poisson noise present, compressed sensing does not raise the amount of Fisher information in the recordings above that of Shannon sampling. Furthermore, enabled by the DQE's analytical tractability, the experimental designs are optimized by finding out the optimal fraction of on pixels as a function of dose and read-out noise. Finally, we introduce a regularization and demonstrate, through simulations and experiment, that it yields reconstructions attaining minimum mean squared error at experimental settings predicted by the DQE as optimal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480352600013 Publication Date 2019-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2333-9403 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.546 Times cited 7 Open Access  
  Notes ; This work was supported by the Hercules fund from the Flemish Government (Qu-Ant-EM microscope used for the experimental data). The work of W. Van den Broek was supported by the DFG under Grant BR 5095/2-1 (Compressed sensing in ptychography and transmission electron microscopy). The work of A. Beche, A. Velazco, and J. Verbeeck was supported by the FWO under Grant G093417N (Compressed sensing enabling low dose imaging in transmission electron microscopy). The work of Christoph T. Koch was supported by the DFG under Grant CRC 951. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Chrysanthe Preza. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161792 Serial 5368  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume (up) 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Egoavil, R.; Huehn, S.; Jungbauer, M.; Gauquelin, N.; Béché, A.; Van Tendeloo, G.; Verbeeck; Moshnyaga, V. pdf  url
doi  openurl
  Title Phase problem in the B-site ordering of La2CoMnO6 : impact on structure and magnetism Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 7 Issue 7 Pages 9835-9843  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial double perovskite La2CoMnO6 (LCMO) films were grown by metalorganic aerosol deposition on SrTiO3(111) substrates. A high Curie temperature, T-C = 226 K, and large magnetization close to saturation, M-S(5 K) = 5.8 mu(B)/f.u., indicate a 97% degree of B-site (Co,Mn) ordering within the film. The Co/Mn ordering was directly imaged at the atomic scale by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (STEM-EDX). Local electron-energy-loss spectroscopy (EELS) measurements reveal that the B-sites are predominantly occupied by Co2+ and Mn4+ ions in quantitative agreement with magnetic data. Relatively small values of the (1/2 1/2 1/2) superstructure peak intensity, obtained by X-ray diffraction (XRD), point out the existence of ordered domains with an arbitrary phase relationship across the domain boundary. The size of these domains is estimated to be in the range 35-170 nm according to TEM observations and modelling the magnetization data. These observations provide important information towards the complexity of the cation ordering phenomenon and its implications on magnetism in double perovskites, and similar materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354983100060 Publication Date 2015-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 37 Open Access  
  Notes 312483 ESTEEM2; FWO G004413N; 246102 IFOX; Hercules; esteem2_jra3 Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:126423 c:irua:126423 Serial 2586  
Permanent link to this record
 

 
Author Lepot, K.; Addad, A.; Knoll, A.H.; Wang, J.; Troadec, D.; Béché, A.; Javaux, E.J. pdf  url
doi  openurl
  Title Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 8 Issue 8 Pages 14890  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397129900001 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access OpenAccess  
  Notes We thank J.-P. Cullus (thin sections), G. Spronck and C. Henrist (TEM), M. Cabié and C. Dominici (FIB), S. Bernard and C. Karunakaran (STXM), F. Bourdelle and G. Ji (EELS), P. Recourt (SEM). This study was co-funded by FRFC Grant no. 2.4558.09F (E.J.J.), CNRS-INSU (K.L.), FNRS (K.L.), ERC StG ELiTE Grant no. 308074 (E.J.J.), BELSPO IAP PLANET TOPERS (E.J.J.), NASA Astrobiology Institute (A.H.K.), Conseil Régional du Nord-Pas de Calais+European Regional Development Fund+CNRS-INSU (TEM in Lille), FP7-ESMI no. 262348 (TEM at EMAT Antwerp) and ANR-15-CE31-0003-01 (M6fossils, K.L.). We thank Noah Planavsky and two anonymous reviewers for thorough reviews that helped improve the paper. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:141919 Serial 4536  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J. pdf  url
doi  openurl
  Title Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 8 Issue 8 Pages 14999  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399084300001 Publication Date 2017-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 84 Open Access OpenAccess  
  Notes ; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 Serial 4548  
Permanent link to this record
 

 
Author Idrissi, H.; Ghidelli, M.; Béché, A.; Turner, S.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. url  doi
openurl 
  Title Atomic-scale viscoplasticity mechanisms revealed in high ductility metallic glass films Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume (up) 9 Issue 1 Pages 13426  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The fundamental plasticity mechanisms in thin freestanding Zr65Ni35 metallic glass films are investigated in order to unravel the origin of an outstanding strength/ductility balance. The deformation process is homogenous until fracture with no evidence of catastrophic shear banding. The creep/relaxation behaviour of the films was characterized by on-chip tensile testing, revealing an activation volume in the range 100–200 Å3. Advanced high-resolution transmission electron microscopy imaging and spectroscopy exhibit a very fine glassy nanostructure with well-defined dense Ni-rich clusters embedded in Zr-rich clusters of lower atomic density and a ~2–3 nm characteristic length scale. Nanobeam electron diffraction analysis reveals that the accumulation of plastic deformation at roomtemperature

correlates with monotonously increasing disruption of the local atomic order. These results provide experimental evidences of the dynamics of shear transformation zones activation in metallic glasses. The impact of the nanoscale structural heterogeneities on the mechanical properties including the rate dependent behaviour is discussed, shedding new light on the governing plasticity mechanisms in metallic glasses with initially heterogeneous atomic arrangement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486139700008 Publication Date 2019-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access  
  Notes H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T.0178.19. FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’) and Hercules fund ‘Direct electron detector for soft matter TEM’ from Flemish Government are acknowledged. Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @c:irua:162786 Serial 5375  
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J. url  doi
openurl 
  Title Magnetic monopole field exposed by electrons Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume (up) 10 Issue 1 Pages 26-29  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328940100012 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 131 Open Access  
  Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885  
Permanent link to this record
 

 
Author Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 10 Issue 10 Pages 22792-22801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453248100010 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 55 Open Access OpenAccess  
  Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071  
Permanent link to this record
 

 
Author Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H. url  doi
openurl 
  Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 10 Issue 10 Pages 1700  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464338100011 Publication Date 2019-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access OpenAccess  
  Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:159341 Serial 5241  
Permanent link to this record
 

 
Author van Huis, M.A.; Figuerola, A.; Fang, C.; Béché, A.; Zandbergen, H.W.; Manna, L. doi  openurl
  Title Letter Chemical transformation of Au-tipped CdS nanorods into AuS/Cd core/shell particles by electron beam irradiation Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 11 Issue 11 Pages 4555-4561  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that electron irradiation of colloidal CdS nanorods carrying Au domains causes their evolution into AuS/Cd core/shell nanoparticles as a result of a concurrent chemical and morphological transformation. The shrinkage of the CdS nanorods and the growth of the Cd shell around the Au tips are imaged in real time, while the displacement of S atoms from the CdS nanorod to the Au domains is evidenced by high-sensitivity energy-dispersive X-ray (EDX) spectroscopy. The various nanodomains display different susceptibility to the irradiation, which results in nanoconfigurations that are very different from those obtained after thermal annealing. Such physical manipulations of colloidal nanocrystals can be exploited as a tool to access novel nanocrystal heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700009 Publication Date 2011-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 25 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:93710 Serial 1814  
Permanent link to this record
 

 
Author Cooper, D.; de la Peña, F.; Béché, A.; Rouvière, J.-L.; Servanton, G.; Pantel, R.; Morin, P. doi  openurl
  Title Field mapping with nanometer-scale resolution for the next generation of electronic devices Type A1 Journal article
  Year 2011 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume (up) 11 Issue 11 Pages 4585-4590  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to improve the performance of todays nanoscaled semiconductor devices, characterization techniques that can provide information about the position and activity of dopant atoms and the strain fields are essential. Here we demonstrate that by using a modern transmission electron microscope it is possible to apply multiple techniques to advanced materials systems in order to provide information about the structure, fields, and composition with nanometer-scale resolution. Off-axis electron holography has been used to map the active dopant potentials in state-of-the-art semiconductor devices with 1 nm resolution. These dopant maps have been compared to electron energy loss spectroscopy maps that show the positions of the dopant atoms. The strain fields in the devices have been measured by both dark field electron holography and nanobeam electron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000296674700014 Publication Date 2011-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2011 IF: 13.198  
  Call Number UA @ lucian @ c:irua:136369 Serial 4499  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope Type A1 Journal article
  Year 2021 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume (up) 11 Issue 19 Pages 9058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in the development of electron and X-ray detectors have opened up the possibility to detect single events from which its time of arrival can be determined with nanosecond resolution. This allows observing time correlations between electrons and X-rays in the transmission electron microscope. In this work, a novel setup is described which measures individual events using a silicon drift detector and digital pulse processor for the X-rays and a Timepix3 detector for the electrons. This setup enables recording time correlation between both event streams while at the same time preserving the complete conventional electron energy loss (EELS) and energy dispersive X-ray (EDX) signal. We show that the added coincidence information improves the sensitivity for detecting trace elements in a matrix as compared to conventional EELS and EDX. Furthermore, the method allows the determination of the collection efficiencies without the use of a reference sample and can subtract the background signal for EELS and EDX without any prior knowledge of the background shape and without pre-edge fitting region. We discuss limitations in time resolution arising due to specificities of the silicon drift detector and discuss ways to further improve this aspect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000710160300001 Publication Date 2021-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 9 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G042920 ; Horizon 2020 Framework Programme, 101017720 ; Helmholtz-Fonds, VH-NG-1317 ; Approved Most recent IF: 1.679  
  Call Number EMAT @ emat @c:irua:183336 Serial 6821  
Permanent link to this record
 

 
Author Liu, P.; Arslan Irmak, E.; De Backer, A.; De wael, A.; Lobato, I.; Béché, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title Three-dimensional atomic structure of supported Au nanoparticles at high temperature Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume (up) 13 Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612999200029 Publication Date 2020-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 13 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A. D. w. and A. D. B. and project funding G.0267.18N.; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:174858 Serial 6665  
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume (up) 14 Issue Pages acsnano.0c02610  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000586793400016 Publication Date 2020-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 25 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942  
  Call Number EMAT @ emat @c:irua:172440 Serial 6426  
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A. url  doi
openurl 
  Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal Article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume (up) 14 Issue 1 Pages 174  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955726400021 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number EMAT @ emat @c:irua:196738 Serial 8804  
Permanent link to this record
 

 
Author Verbeeck, J.; Guzzinati, G.; Clark, L.; Juchtmans, R.; Van Boxem, R.; Tian, H.; Béché, A.; Lubk, A.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Shaping electron beams for the generation of innovative measurements in the (S)TEM Type A1 Journal article
  Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume (up) 15 Issue 2-3 Pages 190-199  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In TEM, a typical goal consists of making a small electron probe in the sample plane in order to obtain high spatial resolution in scanning transmission electron microscopy. In order to do so, the phase of the electron wave is corrected to resemble a spherical wave compensating for aberrations in the magnetic lenses. In this contribution, we discuss the advantage of changing the phase of an electron wave in a specific way in order to obtain fundamentally different electron probes opening up new applications in the (S)TEM. We focus on electron vortex states as a specific family of waves with an azimuthal phase signature and discuss their properties, production and applications. The concepts presented here are rather general and also different classes of probes can be obtained in a similar fashion, showing that electron probes can be tuned to optimize a specific measurement or interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000334013600009 Publication Date 2014-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 22 Open Access  
  Notes Vortex ECASJO_; Approved Most recent IF: 2.048; 2014 IF: 2.035  
  Call Number UA @ lucian @ c:irua:116946UA @ admin @ c:irua:116946 Serial 2992  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: