|
Record |
Links |
|
Author |
Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S. |
|
|
Title |
3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Nanoscale |
Abbreviated Journal |
Nanoscale |
|
|
Volume |
10 |
Issue |
10 |
Pages |
22792-22801 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000453248100010 |
Publication Date |
2018-11-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2040-3364 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.367 |
Times cited |
55 |
Open Access |
OpenAccess |
|
|
Notes |
H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara |
Approved |
Most recent IF: 7.367 |
|
|
Call Number |
EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 |
Serial |
5071 |
|
Permanent link to this record |