|
Record |
Links |
|
Author |
Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J. |
|
|
Title |
Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Nature communications |
Abbreviated Journal |
Nat Commun |
|
|
Volume |
8 |
Issue |
8 |
Pages |
14999 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000399084300001 |
Publication Date |
2017-04-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2041-1723 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.124 |
Times cited |
84 |
Open Access |
OpenAccess |
|
|
Notes |
; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; |
Approved |
Most recent IF: 12.124 |
|
|
Call Number |
EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 |
Serial |
4548 |
|
Permanent link to this record |