|
Record |
Links |
|
Author |
Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H. |
|
|
Title |
Novel class of nanostructured metallic glass films with superior and tunable mechanical properties |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Acta Materialia |
Abbreviated Journal |
Acta Mater |
|
|
Volume |
|
Issue |
|
Pages |
116955 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical
properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide
range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals
and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement
characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment
and amorphous or amorphous-crystalline composite nanostructure has been discovered, while
significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique
nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic
modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to
excellent strength/ductility balance, which can be tuned by playing with the film architecture. These
results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films
with high structural performances attractive for a number of applications in microelectronics and
coating industry. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000670077800004 |
Publication Date |
2021-05-12 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1359-6454 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.301 |
Times cited |
27 |
Open Access |
OpenAccess |
|
|
Notes |
H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. |
Approved |
Most recent IF: 5.301 |
|
|
Call Number |
EMAT @ emat @c:irua:178142 |
Serial |
6761 |
|
Permanent link to this record |