toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rivera Julio, J. url  openurl
  Title (up) Cálculos ab initio de sistemas 2D y de baja dimensionalidad Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 137 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176996 Serial 6718  
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title (up) Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A. url  doi
openurl 
  Title (up) Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
  Year 2021 Publication Biomacromolecules Abbreviated Journal Biomacromolecules  
  Volume 22 Issue 2 Pages 949-960  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links UA library record  
  Impact Factor 5.246 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.246  
  Call Number UA @ admin @ c:irua:175296 Serial 7575  
Permanent link to this record
 

 
Author Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. pdf  url
doi  openurl
  Title (up) Carbon single-electron point source controlled by Coulomb blockade Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 154-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow

at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded

for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize

this potential via creation of a stable point electron source composed of a carbon nanowire electrically

coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize

the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.

Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations

of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.

Persistence of the oscillations at room temperature, high intensity field emission with currents up to

1 mA, and other characteristics of our emitters are very promising for practical realization of coherent

single-electron guns.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500018 Publication Date 2020-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited Open Access OpenAccess  
  Notes The work was supported by Russian Science Foundation (Project No. 19-72-10067). Approved Most recent IF: 6.337  
  Call Number EMAT @ emat @c:irua:175013 Serial 6670  
Permanent link to this record
 

 
Author Sleegers, N. openurl 
  Title (up) Cephalosporin antibiotics : electrochemical fingerprints and redox pathways investigated by mass spectral analysis Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 208 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181014 Serial 7588  
Permanent link to this record
 

 
Author Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. url  doi
openurl 
  Title (up) Challenges in the use of hydrogen for maritime applications Type A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume Issue Pages  
  Keywords A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications; Sustainable energy, air and water technology (DuEL)  
  Abstract Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621101100009 Publication Date 2021-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes For the completion of this work we would like to thank, Compagnie Maritime Belge for initial funding 9 of the research into maritime hydrogen storage and the University of Antwerp for funding of the 10 Doctoral Project that allowed for the completion of this work. Approved Most recent IF: 29.518  
  Call Number DuEL @ duel @c:irua:174754 Serial 6668  
Permanent link to this record
 

 
Author Zhang, L. openurl 
  Title (up) Characteristic diagnosis of atmospheric discharge plasma and kinetics study of reactive species Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XVIII, 148 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low-temperature plasma has received extensive attention due to its promising application prospects in the field of air pollutants degradation and energy conversion. To fulfill the need for particular applications, constructing stable plasma sources and investigating the interaction mechanisms between plasma and substances have been hot research topics. This thesis reports the diagnosis and improvement of plasma sources, diagnosis of the active species in plasma and a modeling study of chemical kinetics processes. The main research contents are as follows: In Chapter 3, a diffuse sine AC dielectric barrier discharge (DBD) is successfully obtained by optimizing the electrode structure. It is found that using double-layer dielectric plates can limit the discharge current intensity and significantly improve the discharge uniformity. The electrical characteristics and gas temperature with different operating time show that the discharge stability is also improved by using double-layer dielectric plates. In Chapter 4, nanosecond pulses are employed to generate diffuse DBD plasmas. Three main discharge stages are distinguished by ICCD images, i.e., the streamer breakdown from the needle tip to the plate electrode, the regime transition from streamer to diffuse plasma, and the propagation of surface discharge on the plate electrode surface. The chapter reveales that in nanosecond pulsed discharges the vibrational temperature of N2 increases with the discharge duration, while the rotational temperature mainly stays constant, which means electron energy is transferred into the vibrational levels, but gas heating is not obvious during the discharge pulse. In Chapter 5, both sine AC DBD and nanosecond pulsed DBD, studied in Chapter 2 and 3, are used for formaldehyde degradation. It is found that nanosecond pulsed DBD has more homogenous characteristics, better stability, and lower plasma gas temperature. Moreover, the energy consumption of nanosecond pulsed DBD is much lower than that of AC DBD. In Chapter 6, a 0D chemical kinetics model is developed to investigate the underlying plasma chemistry of methane dry reforming in a nanosecond pulsed discharge. An overview of the dominant reaction pathways of CO2 and CH4 conversion into the major products is given. Furthermore, most of the CO2 molecules are populated into vibrational states during the pulse. Hence, the vibrational states of CO2 play an important role in its dissociation process. In general, this PhD thesis contributes to a better insight in the mechanisms of sinusoidal AC DBD and nanosecond pulsed DBD plasmas and their applications, i.e., decomposition of formaldehyde and dry reforming of methane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183166 Serial 7605  
Permanent link to this record
 

 
Author Leinders, G.; Baldinozzi, G.; Ritter, C.; Saniz, R.; Arts, I.; Lamoen, D.; Verwerft, M. pdf  url
doi  openurl
  Title (up) Charge Localization and Magnetic Correlations in the Refined Structure of U3O7 Type A1 Journal article
  Year 2021 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 60 Issue 14 Pages 10550-10564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic arrangements in the mixed-valence oxide U3O7 are refined from high-resolution neutron scattering data. The crystallographic model describes a long-range structural order in a U60O140 primitive cell (space group P42/n) containing distorted cuboctahedral oxygen clusters. By combining experimental data and electronic structure calculations accounting for spin–orbit interactions, we provide robust evidence of an interplay between charge localization and the magnetic moments carried by the uranium atoms. The calculations predict U3O7 to be a semiconducting solid with a band gap of close to 0.32 eV, and a more pronounced charge-transfer insulator behavior as compared to the well-known Mott insulator UO2. Most uranium ions (56 out of 60) occur in 9-fold and 10-fold coordinated environments, surrounding the oxygen clusters, and have a tetravalent (24 out of 60) or pentavalent (32 out of 60) state. The remaining uranium ions (4 out of 60) are not contiguous to the oxygen cuboctahedra and have a very compact, 8-fold coordinated environment with two short (2 × 1.93(3) Å) “oxo-type” bonds. The higher Hirshfeld charge and the diamagnetic character point to a hexavalent state for these four uranium ions. Hence, the valence state distribution corresponds to 24/60 × U(IV) + 32/60 U(V) + 4/60 U(VI). The tetravalent and pentavalent uranium ions are predicted to carry noncollinear magnetic moments (with amplitudes of 1.6 and 0.8 μB, respectively), resulting in canted ferromagnetic order in characteristic layers within the overall fluorite-related structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675430900049 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited Open Access OpenAccess  
  Notes Financial support for this research was partly provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD – Spent Fuel CORrosion MODeling). This work was performed in part using HPC resources from GENCI-IDRIS (Grants 2020-101450 and 2020-101601), and in part by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. GL thanks E. Suard and C. Schreinemachers for assistance during the neutron scattering experiments at the ILL. GB acknowledges V. Petříček for suggestions on using JANA2006. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @c:irua:179907 Serial 6801  
Permanent link to this record
 

 
Author Sabzalipour, A. url  openurl
  Title (up) Charge transport in magnetic topological insulators Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xiv, 185 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Novel quantum phases of matter and developing practical control over their characteristics is one of the primary aims of current condensed matter physics. It offers the potential for a new generation of energy, electronic and photonic technologies. Among all the newly found phases of matter, topological insulators are novel phases of quantum matter with fascinating bulk band topology and surface states protected by specific symmetries. For example, at the boundary of a strong topological insulator and a trivial insulator, metallic surface states appear that are protected by time-reversal symmetry. As a result, the bulk continues to be insulating, while the surface can support exotic high-mobility spin-polarized electronic states. Since there is no such thing as a clean system, impurities and other disorders are always present in materials. Even while impurities appear to be unfavorable to a system at first look, doping the host system with impurities allows us to engineer different electronic properties of systems, such as the Fermi level or electron density. Because of the symmetry protected metallic states in topological insulators, charge transport responds distinctively to magnetic and non-magnetic impurities. This doctoral dissertation explores how the longitudinal charge transport in magnetic topological thin films and the anomalous Hall effect on the surface of 3D magnetic topological insulators is influenced by point-like and randomly distributed dilute magnetic impurities. We are interested in how charge transport in these systems responds to the orientation of the magnetization orientation and how this response evolves based on the system's main characteristics, such as the magnitude of the Fermi level or gate voltage. Because topological insulators have a strong spin-orbit coupling, the interaction between conducting electrons and local magnetic impurities is very anisotropic. We will show that this anisotropy even enhances when magnetic topological thin films are exposed to a substrate or gate voltage. Therefore, to properly capture this anisotropy in charge transport calculations, we rely on a generalized Boltzmann formalism together with a modified relaxation time scheme. We show that magnetic impurities affect the charge transport in topological insulators by inducing a transition selection rule that governs scatterings of electrons between various electronic states. We see that this selection rule is highly sensitive to the spin direction of the magnetic impurities as well as the position of the Fermi level. According to this selection rule and depending on the position of the Fermi level, two different transport regimes are realized in magnetic topological thin films. In one of these regimes, our findings show that a dissipation less charge current can be generated. In other words, even if there are many magnetic impurities in the system, electrons do not notice them and, remarkably, conduct charge without dissipation. Outside this regime, the charge transport is always dissipative and its sensitivity to the spatial orientation of the magnetic impurities can be effectively modulated by a substrate or gate voltage. In this doctoral thesis, we also explore the anomalous Hall effect (AHE) on the surface of 3D magnetic topological insulators. The AHE is generated by three mechanisms: the intrinsic effect (owing to a nonzero Berry curvature), the side jump effect, and the skew scattering effect. They compete to dominate the AHE in distinct regimes. Analytically, we calculate the contributions of all three mechanisms to the scattering of massive Dirac fermions by magnetic impurities. Our results reveal three transport regimes based on the relative importance of the engaged mechanisms. The identification of these three distinctive transport regimes can assist experimentalists in achieving a regime in which each contribution is dominant over the others, allowing them to measure them separately. Typically, this is not feasible empirically since the total value of the experimentally observed AHE conceals the specific information of each of the three contributions. Based on our analytical calculations, we prove that the AHE can change sign by varying the orientation of the surface magnetization, the concentration of impurities, and the location of the Fermi level, which is consistent with previous experimental findings. In addition, we show that by suitably adjusting the given parameters, any contribution to the AHE, or even the entire AHE, can be turned off. For example, in a system with in-plane magnetization, one can turn off the AHE by pushing the system into the completely metallic regime. Furthermore, we demonstrate that any contribution to the AHE, or even the whole AHE, can be turned off by appropriately changing the provided parameters. For example, in a system with in-plane magnetization, the AHE can be turned off by pushing the system into the fully metallic regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182192 Serial 6973  
Permanent link to this record
 

 
Author Sabzalipour, A.; Mir, M.; Zarenia, M.; Partoens, B. pdf  doi
openurl 
  Title (up) Charge transport in magnetic topological ultra-thin films : the effect of structural inversion asymmetry Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 32 Pages 325702  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the effect of structural inversion asymmetry, induced by the presence of substrates or by external electric fields, on charge transport in magnetic topological ultra-thin films. We consider general orientations of the magnetic impurities. Our results are based on the Boltzmann formalism along with a modified relaxation time scheme. We show that the structural inversion asymmetry enhances the charge transport anisotropy induced by the magnetic impurities and when only one conduction subband contributes to the charge transport a dissipationless charge current is accessible. We demonstrate how a substrate or gate voltage can control the effect of the magnetic impurities on the charge transport, and how this depends on the orientation of the magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000666698000001 Publication Date 2021-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:179647 Serial 6974  
Permanent link to this record
 

 
Author Navare, K.; Muys, B.; Vrancken, K.C.; Van Acker, K. doi  openurl
  Title (up) Circular economy monitoring – How to make it apt for biological cycles? Type A1 Journal article
  Year 2021 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 170 Issue Pages 105563  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Circular economy (CE) principles distinguish between technical and biological cycles. Technical cycles involve the management of stocks of non-renewable abiotic resources that cannot be appropriately returned to the biosphere, whereas, biological cycles involve the flows of renewable biotic resources that can safely cycle in and out of the biosphere. Despite this distinction, existing CE monitors are typically developed for technical cycles, and focus mainly on the extent to which resources are looped back in the technosphere. These monitors seem less apt to assess the circularity of biological cycles. This study aims to identify this gap by critically reviewing the CE monitoring criteria and CE assessment tools, and evaluate if they include the four key characteristics of biological cycles. Firstly, biotic resources, although renewable, require to be harvested sustainably. Secondly, while abiotic resources can be restored and recycled to their original quality, biotic resources degrade in quality with every subsequent use and are, hence, cascaded in use. Thirdly, biotic resources should safely return as nutrients to the biosphere to support the regeneration of ecosystems. Fourthly, biological cycles have environmental impacts due to resource extraction, resulting from land-use and resource-depletion and biogenic carbon flows. The CE monitoring criteria lack in thoroughly assessing these characteristics. With the growing demand for biotic resources, the gap in the assessment could exacerbate the overexploitation of natural resources and cause the degradation of ecosystems. The study discusses measures to bridge this gap and suggests ways to design a CE assessment framework that is also apt for biological cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667309200009 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.313 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.313  
  Call Number UA @ admin @ c:irua:191685 Serial 7666  
Permanent link to this record
 

 
Author Alemam, E. url  openurl
  Title (up) Cleaning of wall paintings by Polyvinyl alcohol–Borax/Agarose (PVA–B/AG) double network hydrogels : characterization, assessment, and applications Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 184 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Wall paintings make up an important section of cultural heritage. They resemble time portals that can be used to travel back into the past and witness the life of our ancestors. In these paintings, the ancient artists depicted the different aspects of their life, such as cooking, baking, farming, manufacturing, as well as thoughts and beliefs. Unfortunately, wall paintings are susceptible to degradation over time in the form of the accumulations of dirt and deposits on the painted surfaces and loss of adhesion of the paint layers at the surface. Therefore, the removal of these deposits is one of the primary duties of conservator-restorers. Such operations are intended to restore the painted surface to a condition close enough to its original state. Since cleaning artworks may cause undesirable physicochemical alterations and is nonreversible, the proper cleaning procedure should be adopted. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, polyvinyl alcohol-borax (PVA-B) and agarose (AG) hydrogels have been widely employed as cleaning materials by conservator-restorers. However, both hydrogels have shown limitations in specific cleaning practices. In this work, we investigated a new double network hydrogel based on blending PVA-B and agarose to avoid the limitations posed by the constituting hydrogels. For this reason, a detailed characterization of the PVA–B/AG double network hydrogel was performed, including chemical structure, liquid phase retention, mechanical strength, rheological behavior, and self-healing behavior of various PVA-B/AG hydrogels. These new hydrogels revealed better properties than PVA-B and agarose hydrogels and obviated their limitations. A laboratory experiment on the removal of deteriorated Paraloid® B72 proved that the PVA-B/AG hydrogel loaded 10%/10% MEK/1-PeOH was able to remove these layers efficiently. Therefore, the hydrogel was tested on a wall painting from the Temple of Seti I in Abydos – Egypt. It removed the glossy/darkened consolidant from the wall painting and restored the original matt appearance of the painted surface. In another application on the painted ceiling of the same temple, the hydrogel was tested for removing thick soot layers. The hydrogel formulation (loaded with 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA) removed these layers with no noticeable damage to the paint layers. In a wide-scale application of the hydrogel (loaded with 10% propylene carbonate), it removed a highly deteriorated varnish layer from a 19-c wall painting. All the traditional cleaning methods employed caused damage to the paint layers, proving that gel cleaning can be a safer cleaning alternative in some cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183381 Serial 7671  
Permanent link to this record
 

 
Author Berihun, D.; Van Passel, S. pdf  url
doi  openurl
  Title (up) Climate variability and macroeconomic output in Ethiopia : the analysis of nexus and impact via asymmetric autoregressive distributive lag cointegration method Type A1 Journal article
  Year 2021 Publication Environment, development and sustainability Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Ethiopia showed a rapid, yet, a none resilient economic growth much threatened by climate variability. In Ethiopia, the adverse effects of climate variability are stipulated among the significant factors constraining its economic development. There are relatively few studies about the adverse effects of climate variability on the Ethiopian macroeconomy. In this context, little is known about the exact effects of the ongoing climate variability on Ethiopian macroeconomic growth. This study intends to examine whether climate variability factors, for instance rainfall and temperature, have an effect on the macroeconomic output of Ethiopia. An asymmetric autoregressive distributive lag cointegration method is used to investigate time-series data for the years 1950-2014. Diagnostic tests show the relevance of the applied method and robustness of our results. The study finds climate variability affects Ethiopia's economic growth in the long run. Rainfall and temperature fluctuation induce significant negative impacts. A percentage annual temperature variability for instance decreases the Ethiopian annual gross domestic yield (GDP) up to 4.5 percent. In the short run, climate variability particularly rainfall and temperature changes also have a profound effect on Ethiopia's economic output. Within such confirmed climate change impacts, Ethiopia should carry out more on adapting and mitigating the impacts as it is presented on its climate-resilient economic growth policies and strategies. In spite of the policy contribution of the results, the study will motivate further research and will also serve as a benchmark for the coming Ethiopian studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670722100001 Publication Date 2021-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179837 Serial 6917  
Permanent link to this record
 

 
Author Song, C.-H.; Attri, P.; Ku, S.-K.; Han, I.; Bogaerts, A.; Choi, E.H. pdf  url
doi  openurl
  Title (up) Cocktail of reactive species generated by cold atmospheric plasma: oral administration induces non-small cell lung cancer cell death Type A1 Journal article
  Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 54 Issue 18 Pages 185202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with 85% of all lung cancer reported as NSCLC. Moreover, there are no effective treatments in advanced NSCLC. This study shows for the first time that oral administration of plasma-treated water (PTW) can cure advanced NSCLC. The cold plasma in water generates a cocktail of reactive species, and oral administration of this cocktail to mice showed no toxicities even at the highest dose of PTW, after a single dose and repeated doses for 28 d in mice. In vivo studies reveal that PTW showed favorable anticancer effects on chemo-resistant lung cancer, similarly to gefitinib treatment as a reference drug in a chemo-resistant NSCLC model. The anticancer activities of PTW seem to be involved in inhibiting proliferation and angiogenesis and enhancing apoptosis in the cancer cells. Interestingly, the PTW contributes to enhanced immune response and improved cachexia in the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621503200001 Publication Date 2021-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes National Research Foundation (NRF) of Korea, NRF-2016K1A4A3914113 ; We gratefully acknowledge financial support from the Leading Foreign Research Institute Recruitment program (Grant # NRF-2016K1A4A3914113) through the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:176649 Serial 6747  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title (up) Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title (up) Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope Type A1 Journal article
  Year 2021 Publication Applied Sciences-Basel Abbreviated Journal Appl Sci-Basel  
  Volume 11 Issue 19 Pages 9058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Recent advances in the development of electron and X-ray detectors have opened up the possibility to detect single events from which its time of arrival can be determined with nanosecond resolution. This allows observing time correlations between electrons and X-rays in the transmission electron microscope. In this work, a novel setup is described which measures individual events using a silicon drift detector and digital pulse processor for the X-rays and a Timepix3 detector for the electrons. This setup enables recording time correlation between both event streams while at the same time preserving the complete conventional electron energy loss (EELS) and energy dispersive X-ray (EDX) signal. We show that the added coincidence information improves the sensitivity for detecting trace elements in a matrix as compared to conventional EELS and EDX. Furthermore, the method allows the determination of the collection efficiencies without the use of a reference sample and can subtract the background signal for EELS and EDX without any prior knowledge of the background shape and without pre-edge fitting region. We discuss limitations in time resolution arising due to specificities of the silicon drift detector and discuss ways to further improve this aspect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000710160300001 Publication Date 2021-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 9 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G042920 ; Horizon 2020 Framework Programme, 101017720 ; Helmholtz-Fonds, VH-NG-1317 ; Approved Most recent IF: 1.679  
  Call Number EMAT @ emat @c:irua:183336 Serial 6821  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title (up) Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 8 Pages 1780  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644001200001 Publication Date 2021-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746  
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. pdf  url
doi  openurl
  Title (up) Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 26 Pages 14409-14415  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672734100027 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179850 Serial 7719  
Permanent link to this record
 

 
Author Tiwari, S.; Vanherck, J.; Van de Put, M.L.; Vandenberghe, W.G.; Sorée, B. url  doi
openurl 
  Title (up) Computing Curie temperature of two-dimensional ferromagnets in the presence of exchange anisotropy Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal  
  Volume 3 Issue 4 Pages 043024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare three first-principles methods of calculating the Curie temperature in two-dimensional (2D) ferromagnetic materials (FM), modeled using the Heisenberg model, and propose a simple formula for estimating the Curie temperature with high accuracy that works for all common 2D lattice types. First, we study the effect of exchange anisotropy on the Curie temperature calculated using the Monte Carlo (MC), the Green's function, and the renormalized spin-wave (RNSW) methods. We find that the Green's function method overestimates the Curie temperature in high-anisotropy regimes compared to the MC method, whereas the RNSW method underestimates the Curie temperature compared to the MC and the Green's function methods. Next, we propose a closed-form formula for calculating the Curie temperature of 2D FMs, which provides an estimate of the Curie temperature that is greatly improved over the mean-field expression for magnetic material screening. We apply the closed-form formula to predict the Curie temperature 2D magnets screened from the C2DB database and discover several high Curie temperature FMs, with Fe2F2 and MoI2 emerging as the most promising 2D ferromagnets. Finally, by comparing to experimental results for CrI3, CrCl3, and CrBr3, we conclude that for small effective anisotropies, the Green's-function-based equations are preferable, while for larger anisotropies, MC-based results are more predictive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000707506500001 Publication Date 2021-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182522 Serial 6975  
Permanent link to this record
 

 
Author Vanderveken, F.; Mulkers, J.; Leliaert, J.; Van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C. pdf  url
doi  openurl
  Title (up) Confined magnetoelastic waves in thin waveguides Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 5 Pages 054439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides have been investigated by a combination of analytical and numerical calculations. The presence of both magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of the magnetoelastic waves as well as their mode profiles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000627548800003 Publication Date 2021-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:177607 Serial 6976  
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (up) Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610779200008 Publication Date 2021-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176585 Serial 6719  
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C. pdf  url
doi  openurl
  Title (up) Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 14 Pages 7849-7855  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641307100032 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:178393 Serial 7729  
Permanent link to this record
 

 
Author González‐Rubio, G.; Díaz‐Núñez, P.; Albrecht, W.; Manzaneda‐González, V.; Bañares, L.; Rivera, A.; Liz‐Marzán, L.M.; Peña‐Rodríguez, O.; Bals, S.; Guerrero‐Martínez, A. url  doi
openurl 
  Title (up) Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2021 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume Issue Pages 2002134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000625964300001 Publication Date 2021-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 10 Open Access OpenAccess  
  Notes G.G.‐R., P.D.‐N., and W.A. contributed equally to this work. This work was funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant Nos. RTI2018‐095844‐B‐I00, PID2019‐105325RB, and PGC2018‐096444‐B‐I00), the Madrid Regional Government (Grant Nos. P2018/NMT‐4389 and S2018/EMT‐4437), and the EUROfusion Consortium (grant ENR‐IFE19.CCFE‐01). This work was supported by COST (European Cooperation in Science and Technology) Action TUMIEE (Grant No. CA17126). S.B. and W.A. acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC Consolidator Grant No. 815128 – REALNANO). All the authors acknowledge funding from the European Commission (Grant No. E180900184‐EUSMI). G.G.‐R. thanks the Spanish MICIU for an FPI (Grant No. BES‐2014‐068972) fellowship. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska‐Curie actions (MSCA) under the EU's Horizon 2020 Program (Grant No. 797153, SOPMEN). The facilities provided by the Center for Ultrafast Laser of Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by CESVIMA (UPM).; sygmaSB Approved Most recent IF: 6.875  
  Call Number EMAT @ emat @c:irua:177586 Serial 6758  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Yong, X.; Kumar, P.; Palma, B.; Hu, Z.-Y.; Van Tendeloo, G.; Siahrostami, S.; Larter, S.; Zheng, D.; Wang, S.; Chen, Z.; Kibria, M.G.; Hu, J. url  doi
openurl 
  Title (up) Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction Type A1 Journal article
  Year 2021 Publication iScience Abbreviated Journal  
  Volume 24 Issue 2 Pages 102109  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solidsolution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 +/- 27.6 mu mol.h(-1).g(cat).(-1)), glucose conversion (similar to 90%), and lactic acid selectivity (similar to 87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (center dot O-2(-)) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621266700080 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-0042 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176744 Serial 6720  
Permanent link to this record
 

 
Author Chee, S.-S.; Greboval, C.; Vale Magalhaes, D.; Ramade, J.; Chu, A.; Qu, J.; Rastogi, P.; Khalili, A.; Dang, T.H.; Dabard, C.; Prado, Y.; Patriarche, G.; Chaste, J.; Rosticher, M.; Bals, S.; Delerue, C.; Lhuillier, E. pdf  url
doi  openurl
  Title (up) Correlating structure and detection properties in HgTe nanocrystal films Type A1 Journal article
  Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 21 Issue 10 Pages 4145-4151  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000657242300002 Publication Date 2021-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 20 Open Access OpenAccess  
  Notes The project is supported by ERC starting grant blackQD (Grant No. 756225) and consolidator grant Realnano (815128). This project has received funding from the European Commission (Grant 731019, EUSMI). We acknowledge the use of cleanroom facilities from the “Centrale de Proximité Paris-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (Grant dopQD). This work was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE and also by grants IPERNano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24- 0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19- CE09-0026), and NITQuantum (ANR-20-ASTR-0008-01). A.C. thanks Agence innovation defense for Ph.D. funding; sygmaSB Approved Most recent IF: 12.712  
  Call Number UA @ admin @ c:irua:179127 Serial 6837  
Permanent link to this record
 

 
Author Kadu, A.; van Leeuwen, T.; Batenburg, K.J. pdf  url
doi  openurl
  Title (up) CoShaRP : a convex program for single-shot tomographic shape sensing Type A1 Journal article
  Year 2021 Publication Inverse Problems Abbreviated Journal Inverse Probl  
  Volume 37 Issue 10 Pages 105005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We introduce single-shot x-ray tomography that aims to estimate the target image from a single cone-beam projection measurement. This linear inverse problem is extremely under-determined since the measurements are far fewer than the number of unknowns. Moreover, it is more challenging than conventional tomography, where a sufficiently large number of projection angles forms the measurements, allowing for a simple inversion process. However, single-shot tomography becomes less severe if the target image is only composed of known shapes. This paper restricts analysis to target image function that can be decomposed into known compactly supported non-negative-valued functions termed shapes. Hence, the shape prior transforms a linear ill-posed image estimation problem to a non-linear problem of estimating the roto-translations of the shapes. We circumvent the non-linearity by using a dictionary of possible roto-translations of the shapes. We propose a convex program CoShaRP, to recover the dictionary coefficients successfully. CoShaRP relies on simplex-type constraints and can be solved quickly using a primal-dual algorithm. The numerical experiments show that CoShaRP recovers shape stably from moderately noisy measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000691743700001 Publication Date 2021-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-5611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.62 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.62  
  Call Number UA @ admin @ c:irua:181617 Serial 6859  
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d. url  doi
openurl 
  Title (up) Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 127 Issue 12 Pages 127202  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704665000010 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 17 Open Access OpenAccess  
  Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @c:irua:182595 Serial 6824  
Permanent link to this record
 

 
Author Logie, E.; Chirumamilla, C.S.; Perez-Novo, C.; Shaw, P.; Declerck, K.; Palagani, A.; Rangarajan, S.; Cuypers, B.; De Neuter, N.; Mobashar Hussain Urf Turabe, F.; Kumar Verma, N.; Bogaerts, A.; Laukens, K.; Offner, F.; Van Vlierberghe, P.; Van Ostade, X.; Berghe, W.V. url  doi
openurl 
  Title (up) Covalent Cysteine Targeting of Bruton’s Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 7 Pages 1618  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells’ uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA’s promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000638328000001 Publication Date 2021-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes The authors thank Eva Lion, Head of Tumor Immunology Group of the Laboratory of Experimental Hematology (University of Antwerp), for kindly providing GC‐resistant U266 cells. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177781 Serial 6751  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title (up) Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title (up) Critical behavior of the ferromagnets CrI₃, CrBr₃, and CrGeTe₃ and the antiferromagnet FeCl₂ : a detailed first-principles study Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3), chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Ned temperature of a layered antiferromagnet iron di-chloride (FeCl2), using first-principles density functional theory calculations and Monte Carlo simulations. We develop a computational method to model the magnetic interactions in layered magnetic materials and calculate their critical temperature. We provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg Hamiltonian from first principles, taking into account both the magnetic ansiotropy as well as the out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional Monte Carlo (METROPOLIS) algorithm. The calculated Curie temperatures for ferromagnetic materials (CrI3, CrBr3, and CrGeTe3), match well with experimental values. We show that the interlayer interaction in bulk CrI3 with R (3) over bar stacking is significantly stronger than the C2/m stacking, in line with experimental observations. We show that the strong interlayer interaction in R (3) over bar CrI3 results in a competition between the in-plane and the out-of-plane magnetic easy axes. Finally, we calculate the Ned temperature of FeCl2 to be 47 +/- 8 K and show that the magnetic phase transition in FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition and a low-temperature interlayer antiferromagnetic phase transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000609012000002 Publication Date 2021-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes ; The project or effort depicted was or is sponsored by the Department of Defense, Defense Threat Reduction Agency Grant No. HDTRA1-18-1-0018. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred. This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176081 Serial 6686  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: