|
Record |
Links |
|
Author |
Kleshch, V.I.; Porshyn, V.; Orekhov, A.S.; Orekhov, A.S.; Lützenkirchen-Hecht, D.; Obraztsov, A.N. |
|
|
Title |
Carbon single-electron point source controlled by Coulomb blockade |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Carbon |
Abbreviated Journal |
Carbon |
|
|
Volume |
171 |
Issue |
|
Pages |
154-160 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The Coulomb blockade effect is commonly used in solid state electronics for the control of electron flow
at the single-particle level. Potentially, it allows the creation of single-electron point sources demanded
for prospective electron microscopy instruments and other vacuum electronics devices. Here we realize
this potential via creation of a stable point electron source composed of a carbon nanowire electrically
coupled to a diamond nanotip by a tunnel junction. Using energy spectroscopy analysis, we characterize
the electrons liberated from the nanometer scale carbon heterostructures in time and energy domains.
Our experimental results demonstrate perfect agreement with theory prediction of Coulomb oscillations
of the Fermi level in the nanowire and allow to determine the mechanisms of their suppression.
Persistence of the oscillations at room temperature, high intensity field emission with currents up to
1 mA, and other characteristics of our emitters are very promising for practical realization of coherent
single-electron guns. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000598371500018 |
Publication Date |
2020-09-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0008-6223 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.337 |
Times cited |
|
Open Access |
OpenAccess |
|
|
Notes |
The work was supported by Russian Science Foundation (Project No. 19-72-10067). |
Approved |
Most recent IF: 6.337 |
|
|
Call Number |
EMAT @ emat @c:irua:175013 |
Serial |
6670 |
|
Permanent link to this record |