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Abstract. We introduce single-shot X-ray tomography that aims to estimate the

target image from a single cone-beam projection measurement. This linear inverse

problem is extremely under-determined since the measurements are far fewer than the

number of unknowns. Moreover, it is more challenging than conventional tomography

where a sufficiently large number of projection angles forms the measurements, allowing

for a simple inversion process. However, single-shot tomography becomes less severe

if the target image is only composed of known shapes. Hence, the shape prior

transforms a linear ill-posed image estimation problem to a non-linear problem of

estimating the roto-translations of the shapes. In this paper, we circumvent the

non-linearity by using a dictionary of possible roto-translations of the shapes. We

propose a convex program CoShaRP to recover the dictionary-coefficients successfully.

CoShaRP relies on simplex-type constraint and can be solved quickly using a primal-

dual algorithm. The numerical experiments show that CoShaRP recovers shapes stably

from moderately noisy measurements.

Keywords: computational imaging, X-ray tomography, compressed sensing, shape

identification, convex optimization

Submitted to: Inverse Problems

1. Introduction

In tomographic imaging, the aim is to characterize the three-dimensional structure of

an object from X-ray projections. In applications like medical CT, projections are

gathered from all directions. This allows for a relatively straight-forward reconstruction

of the object using so-called filtered back-projection methods (FBP)[1, 2, 3]. When

only a limited angular sampling is available, more advanced iterative reconstruction

techniques that use prior information about the structure of the object have been

developed [4, 5, 6, 7, 8]. In this paper, we consider an extreme case where we acquire

only a single X-ray projection on which to base a full three-dimensional reconstruction.

We refer to this problem as single-shot X-ray tomography. This problem is highly
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Figure 1. Demonstration of single-shot X-ray tomography. A target image (a) of size

1 m × 1 m discretized on 128 × 128 pixel grid has a fan-beam projection shown in

(c). The image consists of 4 different shapes with different intensities. The equally-

spaced detectors place at the top of the image collect a total of 1024 measurements

resulting from an X-ray source at the bottom of the image. We consider FBP (c), Total

Variation (TV) regularization (d), and Sparse Shape Composition (e). Our proposed

approach CoShaRP is given in (f). The shape coefficients for SSC and CoShaRP are

given below their figures, while dotted ones denote the correct coefficients.

relevant for many applications, including industrial quality control and high-throughput

imaging [9, 10, 11, 12]. A typical setup consists of a fixed X-ray source and detector

that collects single X-ray projections of the objects of interest. While we specifically

target reconstruction from single-angle X-ray projections, the techniques we develop are

also relevant for limited-angle tomography with applications including high-resolution

dynamic imaging[13, 14] and cryo-electron microscopy [15, 16].

The single-shot X-ray tomography problem is extremely under-determined, making

it an ill-posed inverse problem. A single cone-beam projection of a volume containing

n3 voxels consists of O(n2) measurements. Hence, the measurements are undersampled

by a factor of n. To reduce the ill-posedness, it is a general practice to incorporate

prior information via regularization. However, classic regularization methods fail on

single-shot X-ray tomography, as demonstrated in Figure 1.
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Since it is evident that a strong prior is necessary to recover the target image from

a single projection, we consider the class of objects that are composed of a limited

number of known building blocks. This is a reasonable assumption when imaging

materials that are made up of basic structures, such as a 3D structure comprising

interlocking bricks or a protein structure consisting of repeated amino acid groups.

Hence, if such shapes and their number of repetitions are known a-priori, the image

estimation problem can be recast as an estimation of roto-translation parameters of

these shapes. The recovery of shape parameters (i.e., the roto-translations of shapes)

from the linear measurements of the image that consists of these shapes is called shape

sensing. However, unlike the image estimation problem – which has a simple linear

structure – the estimation of roto-translation parameters is a non-linear problem. This,

in turn, makes the inversion process computationally intractable. To avoid such non-

linearity, we use a shape dictionary approach that expresses the target image as a linear

combination of shapes from the available dictionary. Due to the linear structure, we

show that it is possible to recover the shapes from a single-shot X-ray projection (see

Figure 1) by solving a convex problem. We regard the recovery of shapes from their

tomographic projections as tomographic shape sensing.

1.1. Related Work

The shape sensing problem has been studied in the context of shape-based

characterization, object tracking and optical character recognition. Inspired by the

compressed sensing, a recent approach called Sparse Shape Composition (SSC) imposes

an ℓ1-norm constraint on the shape-dictionary coefficients [17, 18]. SSC has the

advantage that it can form new shapes from the intersection and union of basic shapes.

However, the main drawback comes from large feasible solution space inherent to the

ℓ1-norm constraint in high dimension (see Remark 3.2). This large feasible space

may lead to an incorrect solution. A simplistic version of SSC performs the 3D

characterization of nano-particles using electron tomography [19]. This method uses

a simple ℓ1-norm constraint to recover spherical nano-particles from their tomographic

projections. However, their tomographic projections have a parallel-beam geometry

and require measurements from more than one projection angle. Although SSC has

been extended to tomographic inverse problem, it has never been tested for single-shot

tomographic shape sensing. However, we demonstrate the failure of SSC in single-shot

cone-beam tomography in Figure 1.

1.2. Contributions and Outline

To the best of our knowledge, the single-shot X-ray tomography has never been studied,

and no reconstruction method exist till date to recover back an image successfully from

a single-shot. We introduce the tomographic shape sensing problem that assumes the

prior knowledge about the shapes in the image. The principal contribution of this paper

is the development of the convex program CoShaRP to reconstruct images composed
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of non-overlapping shapes from a single-shot. The convex program is novel in the sense

that the simplex-type constraint enables sharp recovery results from extremely under-

determined single-shot tomographic projections. Although the exact recovery problem is

NP-hard, our proposed convex program CoShaRP stably recovers the shapes. Moreover,

we propose a primal-dual algorithm to find the optimal solution of CoShaRP. The

algorithm does not rely on the inversion of large matrices and uses a simple proximal

operator to project onto a K−simplex constraint. Using numerical experiments, we

answer the following questions:

(i) What is the minimum resolution of the shape that CoShaRP can sense?

(ii) Is CoShaRP robust to the number of repetitions and the possible rotations of the

shapes in the target image?

(iii) Can CoShaRP recover non-homogeneous as well as non-convex shapes?

(iv) How sensitive is CoShaRP to the measurement noise?

We discuss the single-shot tomographic inverse problem in Section 2. Section 3 discusses

the tomographic shape sensing problem and introduces a convex program CoShaRP.

We describe an efficient iterative scheme to find an optimal solution to CoShaRP in

Section 4. We illustrate the numerical experiments in Section 5 and conclude the paper

in Section 6.

1.3. Notation

Throughout this paper, small boldface letters (e.g., x, z) denote vectors in R
n. The

identity and zero elements are denoted by 0 and 1 respectively. The Euclidean inner

product is denoted by 〈x,y〉 =
∑n

i=1 xiyi for x,y ∈ R
n with a corresponding norm

‖x‖ =
√
〈x,x〉. However, for all other norms, we use subscripts (e.g., ‖x‖1 =

∑n
i=1 |xi|,

‖x‖∞ = maxi |xi|). To represent the matrices, we use uppercase letters (e.g., A,Ψ).

The elements of a matrix A are denoted by aij. All the functions are represented as

f : X 7→ Y , where X and Y are the domain and co-domain of f , respectively. We

denote the convex conjugate of the function f by f ⋆. proxf (z) denotes the proximal of

function f evaluated at point z (for definition, please refer to [20]). We represent the

optimal solution to the optimization problem using overline (e.g., x, µ).

2. Single-shot X-ray Tomography

The acquisition geometry of single-shot X-ray tomography consists of one source and an

array of regularly spaced detectors. Let ϕ ∈ S
d−1 be a directional vector, and r ∈ R

d

be any position vector, where d ∈ {2, 3} is the dimension of the scene. The cone-beam

transform AC of an image function x : Rd 7→ R is its integral along a line in the direction

ϕ passing through r. It is mathematically given by

(ACx)(r,ϕ) =

∫ ∞

0

x(r + tϕ) dt.
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In a single-shot setup, we have a source located at r0. It sends multiple X-rays through

the object (compactly supported on Ω ⊂ R
d) in a cone with a vertex at r0 and spanning

angles in a set Φ that determines the geometry of cone. Let these angles be ϕi ∈ Φ,

i = 1, . . . ,m, then the measurement yi is

yi = (ACx) (r0,ϕi) ≈
n∑

j=1

aijxj,

where xj denotes the value of x in the jth voxel and aij is the contribution of the jth

voxel to the ith ray. The measurements can now be expressed as a linear system of

equations

y = Ax.

The above linear system of equations is extremely under-determined since the number

of measurements m is far smaller than the number of unknowns n. We do assume that

each voxel is intersected by at least one ray, so that each column of the matrix has at

least one non-zero element. Determining the image from the measurements is an ill-

posed inverse problem. In general, to resolve this ill-posedness, regularization needs to

be added in the inversion procedure to incorporate the prior knowledge about the target

image. However, conventional regularization techniques are not sufficient to resolve the

true image, as was illustrated in Figure 1.

3. Convex Shape Recovery

In this section, we discuss the tomographic shape sensing problem. Our formulation

hinges on the formation of a dictionary that consists of possible roto-translations of

the known shapes and the representation of target image as a convex combination of

dictionary elements.

3.1. Image model and Dictionary

Let the functions ui : Ω 7→ R, i = 1, . . . , S, denote the compactly supported shape

functions. The image is now assumed to be composed of roto-translations of these

shapes

x(r) =
S∑

i=1

ki∑

j=1

ui (R (θi,j) r + si,j)

where θi,j ∈ R
d(d−1)/2 and si,j ∈ R

d are the angle and the shift of jth copy of shape i

respectively, and R ∈ R
d×d is a rotation matrix that depends on the angle θ. The total

number of shapes in an image are K = k1 + · · ·+ kS. Hence, from the knowledge of the

shapes, the image estimation translates to finding the roto-translation parameters (θ, s)

of the shapes. However, the image is a non-linear function of these parameters. Hence,

the recovery of these parameters becomes a computationally intractable problem due to

the non-convex structure of the cost function.
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To mitigate the non-linearity associated with the roto-translation parameters, we

create a shape dictionary that consists of roto-translations of the shapes. Let the

dictionary

Ψ(r) =
[
Ψ̂1(r), . . . , Ψ̂S(r)

]
,

with Ψ̂i(r) =
[
ui (R (θi,j) r + si,j)

]J
j=1
, i = 1, . . . , S,

where j = 1, . . . , J covers possible roto-translations of the shapes. Hence, the target

image can be represented as a linear combination of the elements of this dictionary,

x(r) =
∑p

i=1
ziψi(r)

with zi ∈ {0, 1}, i = 1, . . . , p,

where z = [z1, . . . , zp]
T is a coefficient vector, with p = JS. Hence, the shape recovery

problem is to find a high-dimensional binary vector z from its linear measurements

y = AΨz.

Here, AΨ contains the projections of the individual dictionary elements, sampled at the

appropriate points. The binary constraints on z make the recovery problem an integer

program, and hence, NP-hard in general [21].

3.2. Convex Shape Recovery Program (CoShaRP)

The binary constraints on the coefficients can be relaxed using the bounds constraints.

Moreover, a Gaussian assumption on the noise leads to a least-squares formulation for

the data misfit. Hence, the resulting convex program, which we refer to as the Convex

Shape Recovery Program (CoShaRP), reads

minimize
z∈Rp

‖AΨz − y‖

subject to zT1 = K, 0 ≤ z ≤ 1.
(1)

Here, the inequality between vectors is imposed elementwise. Note that we have used

the Euclidean norm instead of its square to measure the misfit.

The geometric interpretation of CoShaRP is as follows: We are trying to find a

high-dimensional vector z closest to the hyperplane AΨz = y in a Euclidean sense

that lies on the intersection of a hyperplane zT1 = K and the hyperbox 0 ≤ z ≤ 1. In

Figure 2, we show the geometry for a shape-sensing problem with two possible shapes

(p = 2). In Figure 2(a), the hyperplane corresponding to tomographic measurements

intersects the hyperplane corresponds to equality constraints (zT1 = K) outside the

hyperbox. Hence, the solution to CoShaRP in this case is binary. However, a binary

solution can not always be guaranteed as these hyperplanes may intersect inside the
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Figure 2. Geometry of CoShaRP. The grey region denotes the hyperbox that

corresponds to bounds constraints(0 ≤ z ≤ 1). Solid line denotes the hyperplane

for constraint on the number of shapes in the image, while dotted line denotes the

hyperplane for measurement AΨz = y. Note that the measurement hyperplanes do

not pass through point (0, 1) or (1, 0) due to noise in the measurements. The star

denotes the solution of CoShaRP. The figure (a) denotes the setup where coefficient is

binary, while (b) with a non-binary solution.

hyperbox (cf. Figure 2(b)). In such cases, further post-processing is required to retrieve

the target image. For more, refer to Section 4.3.

The CoShaRP consists of constraints that are defined by K-simplex. The K-simplex,

defined as

∆K
p =

{
z ∈ R

p |
∑p

i=1
zi = K, 0 ≤ z ≤ 1

}
,

is a generalized version simplex (simplex has K = 1). K-simplex represents a polytope

in p-dimension with
(
p
k

)
vertices. Moreover, these polytopes are regular, i.e., they posses

highest level of symmetry. We plot K-simplex in three dimension in Figure 3. These

simplices are equilateral triangle except for K = 3. However, it is important to note

that the number of shapes in the target image will be much smaller than the number of

dictionary elements (i.e., K ≪ p). Hence, we will frequently encounter feasible regions

to be extremely low-dimensional polytope embedded in a high-dimensional space.

Remark. CoShaRP differs significantly from the Sparse Shape Composition (SSC)

[17, 19]. SSC formulates the shape-sensing problem as

minimize 1
2
‖AΨz − y‖2 subject to ‖z‖1 ≤ K. (2)

The ℓ1-norm ball is bigger in size than the K-simplex constraint set used in CoShaRP. In

particular, the K-simplex constraint represents the strict ℓ1 ball, i.e., ‖z‖1 = K, in the

non-negative region. Since the solution lies on the corners of the K-simplex constraint,

the recovery with CoShaRP is stronger than that of SSC (see, e.g., Figure 1).
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4. Optimization

We discuss a fast iterative scheme to find an approximate solution of CoShaRP

numerically. The iterative scheme is based on splitting strategy that separates the

non-smooth part from the smooth. We also introduce a thresholding method to recover

the image from the coefficient vector, in case the solution is not binary.

4.1. Primal-Dual Algorithm

For simplicity, we express CoShaRP in the following form:

minimize f(AΨz) + g(z),

where f(z) = ‖z − y‖ , g(z) = δC(z),

with C(z) =
{
z ∈ R

n | zT1 = K, 0 ≤ z ≤ 1
}
,

and δC is the indicator function of the set C. To solve this optimization problem, we use

a primal-dual splitting algorithm [22, 23]. The iterates of this primal-dual algorithm

takes the following form:

zt+1 = proxγg

(
zt − γΨTATut

)
,

ut+1 = proxτf⋆

(
ut − τAΨ (zt − 2zt+1)

)
,

for t = [0, 1, . . . , T ], where γ, τ > 0, with γτ ≤ ‖AΨ‖−1, are parameters that controls

the speed of convergence. The main characteristic of this algorithm is that we avoid

an inversion of a large matrix Ψ which often occurs in other splitting methods such

as alternating direction method of multipliers [24]. Moreover, the proximal of both

functions are easy to compute.

Remark. The proposed primal-dual algorithm does not require user to store a large

dictionary matrix Ψ as well as tomography matrix A. Hence, the algorithm can utilize

(a) 1-simplex (b) 2-simplex (c) 3-simplex

•

Figure 3. K-simplex in 3D. Barring K = 3 case where the K-simplex reduces to

a point, the simplex are equilateral triangles (denoted by red color). The gray box

denotes the bounds constraints.
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Algorithm 1 Primal-Dual Algorithm for CoShaRP

Input: A ∈ R
m×n,Ψ ∈ R

n×p,y ∈ R
m, γ, τ, T, ǫ

Output: z

Initialisation : z0,u0

1: for t = 0 to T do

2: compute zt+1 =proxγg

(
zt − γΨTATut

)
using eq. (4)

3: compute ut+1 = proxτf⋆(ut − τAΨ(zt − 2zt+1)) using eq. (3)

4: if ‖AΨzt − y‖ ≤ ǫ then

5: return z = zt+1

6: end if

7: end for

8: return z = zT

the functional forms of the dictionary as well as tomography operator since it only

requires the forward and the adjoint operation with the operator.

4.2. Proximal operators

The conjugate function of f(x) = ‖x− y‖ is

f ⋆(w) = − inf
x

{
f(x)− xTw

}

=

{
wTy if ‖w‖ ≤ 1

+∞ otherwise

We refer to [25, Example 3.26] for the derivation of the conjugate function. The

conjugate function is linear inside the Euclidean norm ball of size 1 and ∞ outside.

Hence, the conjugate function is convex. Its proximal operator is given in the following

theorem.

Theorem 1. The proximal operator of function

f ⋆(x) =

{
yTx ‖x‖ ≤ 1

+∞ otherwise
,

where y ∈ R
n is a known vector, is given by

proxγf⋆(z) =
z − γy

max (1, ‖z − γy‖)
. (3)

Proof. The proximal operator for function f ⋆ reads

proxγf⋆(z) = argmin
x

{
1

2γ
‖x− z‖2 + xTy : ‖x‖ ≤ 1

}
,

= argmin
‖x‖≤1

{
‖x− (z − γy) ‖2 − γ2‖y‖2 + 2γzTy

}
.
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The Euclidean norm constraints enforces two cases: (i) The optimal point without the

constraints is x = z − γy. This optimal solution holds when ‖x‖ ≤ 1. (ii) When

‖z − γy‖ > 1, the optimal solution lies on the surface of the Euclidean norm ball with

size 1. Moreover, the optimal solution is in the direction of z−γy. Hence, the proximal

point is

proxγf⋆(z) =

{
z − γy ‖z − γy‖ ≤ 1
z−γy

‖z−γy‖
otherwise

.

This concludes the proof.

We use the following theorem to compute the proximal of g(z) = δC(z), adapted

from [26, Theorem 6.27].

Theorem 2 (projection onto the intersection of a hyperplane and a box). Let C = {x ∈

R
n |xT1 = K,0 ≤ x ≤ 1} be a set. The proximal operator of an indicator function to

the set, δC, is given by

proxγδC
(x) = P[0,1] (x− µ1) (4)

where P[0,1] is a projection onto the box [0, 1]n and µ is a solution of the equation

1TP[0,1] (x− µ1) = K.

Proof. The orthogonal projection of x is the unique solution of

min
z∈Rn

{
1
2
‖z − x‖2 : 1Tz = K, 0 ≤ z ≤ 1

}
. (5)

A Lagrangian of this minimization problem reads

L(z, µ) = 1
2
‖z − x‖2 + µ

(
1Tz −K

)
,

where µ ∈ R is a Lagrange multiplier. It follows from the strong duality that z is an

optimal solution of problem (5) if and only if there exists a dual variable µ ∈ R for

which

y⋆ ∈ argmin
0≤z≤1

L(z, µ), (6)

1Tz = K. (7)

Using the expression for the Lagrangian, the relation (6) can be equivalently written

as z = P[0,1] (x− µ1). The feasibility condition (7) takes a form 1TP[0,1] (x− µ1) =

K.

Remark. The projection onto the box [0,1] is simple. It is done component-wise as(
min{max{xi, 0}, 1}

)n
i=1

. However, equation (4) consists of finding a root of the non-

increasing function φ(µ) =
∑n

i=1 min{max{xi−µ, 0}, 1}−K. Since µ 7→ min{max{xi−

µ, 0}, 1} is a non-increasing function for any i, φ is a non-increasing function. Its root

can be found using the Newton procedure, where derivative is

φ′(µ) = |I|, with I = {i ∈ {1, . . . , n} : 0 ≤ xi − µ ≤ 1} .
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Algorithm 2 Image formation from shape coefficients

Input: z ∈ R
p,A ∈ R

m×n,Ψ ∈ R
n×p,y ∈ R

m, K

Output: x

Initialisation : x = 0, i = 0, s = 0

1: sort the elements of z in the descending order, and store its indices as a list T

2: while (s ≤ K) or (i ≤ p) do

3: x̂ = x+ΨeT (i)

4: if ‖Ax̂− y‖ ≤ ‖Ax− y‖ and xTΨeT (i) ≤ 0 then

5: x = x̂, s = s+ 1

6: end if

7: i = i+ 1

8: end while

9: return x

4.3. Image Formation

The convex program CoShaRP does not always lead to a binary solution (refer to

Figure 2). Moreover, if the optimization procedure is terminated early, we may not have

a binary solution. Hence, an accurate image formation process is essential to retrieve

the target image from the non-binary shape coefficient vector resulting from CoShaRP.

We propose the image formation procedure based on sorting of the coefficients. We first

sort the coefficients in descending order, and selectively form the image consistent with

the measurements. Algorithm 2 enumerates the steps in the image formation process.

Here, ej is a natural basis vector with non-zero element located at jth position. To

make sure the shapes do not overlap, we also add necessary conditions (see step 4 in

Algorithm 2).

5. Numerical Experiments

In this section, we try to answer questions regarding resolution, sparsity, rotations and

the performance under noise using 2D numerical experiments. For all the experiments,

we have images of size 1 m× 1 m discretized on 128× 128 pixels, and the tomography

matrix has at least 1024 measurements. The typical tomography setup is shown in

Figure 4. In the CoShaRP performance plots, we generate 100 different realizations of

the target image with given constraints (for examples, size, rotations and repetitions of

the shape), and the success rate is measured from the average over all instances. We say

an instance is successful if the recovered image is close to the target image (in Euclidean

norm).

For all the experiments, we run Algorithm 1 with γ = 1.2σ, τ = 0.8σ with

σ = ‖AΨ‖−1. Moreover, we set T = 4p2 and ǫ = 1e− 6. Once we obtain the vector z,

we run Algorithm 2 to form the image.
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Figure 4. Single-shot tomography setup. The source (denoted by ⋆) is located at

the left of the target image. The detector array consisting of 1024 detectors is located

at the right of the image. For reference, we only show 7 detectors (denoted by ▽).

Measurement profile is shown on the right of the detector array.

5.1. Resolution Analysis

In this experiment, we estimate the required minimum width of the shape sensed by

a single-shot. For simplicity, we consider circular disc of constant intensity with size

varying from 1 to 3168 pixels. Figure 5(a) shows the performance of CoShaRP against

varying sizes of the disc. As the number of measurements (i.e., detector pixels) is

increased, the success rate increases implying that the recovery of even single-pixel

shapes is possible with CoShaRP.

5.2. Invariance with respect to Density and Rotation

We first look at the success of CoShaRP with multiple repetitions of the shape. We

consider a circular disc with size 256 pixels and the number of repetitions in the image

from 1 to 20. The top figure in Figure 5(b) shows the performance of CoShaRP with

density. This shows that the CoShaRP is insensitive to the number of repetitions of

the shapes in the image. Next, we take an ellipsoidal disc with semi-axes 0.2 m and

0.08 m. This image is rotated for 30 angles making sure that each angle represents a

different shape on the 128× 128 pixels. The bottom figure in Figure 5(b) demonstrates

the performance of CoShaRP with the number of possible rotations. This implies that

the CoShaRP is insensitive to the number of possible rotations of the shapes.

5.3. Non-homogeneous and Non-convex Shapes

The top figure in Figure 5(c) provides the reconstruction from CoShaRP for non-

homogeneous shape. We consider a circular shape with four different intensities varying

radially. The true image consists of 5 repetitions of this shape. The CoShaRP recovers

these 5 copies successfully as shown from the shape coefficients (given below the figure).

For non-convex shape, we consider ellipsoidal shell with outer axes 0.2m and 0.05m, and

inner axes 0.15 m and 0.03 m. The bottom figure in Figure 5(c) gives the reconstruction

with CoShaRP for a true image with 6 repetitions of the above-mentioned non-convex
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Figure 5. Numerical results for CoShaRP.

shape. From these two experiments, we conclude that the CoShaRP can recover the

non-homogeneous and non-convex shapes.

5.4. Measurement Noise

We consider the true image shown in Figure 1 and consider three noisy scenarios where

the Gaussian noise of strength 0.1%, 1% and 10% is added to 1024 measurements. In

Figure 5(d), we plot the measurements (on the left) and the reconstructed image (on the

right) for the above-mentioned noise values. In the measurements plots, the true noisy

data is mentioned as ‘true’, while the forward projected data from the reconstructed

image is denoted by ‘rec’. The plots below them show the difference between the two.

From Figure 5(d), it is evident that the CoShaRP is stable till 1% noise, while fails for

extremely noisy measurements.

6. Conclusions

We introduced a single-shot tomographic shape sensing problem that aims to recover

shapes from a single cone-beam projection. To solve this problem, we develop a convex

program CoShaRP. CoShaRP is novel in the sense that the simplex-type constraint

enables sharp recovery results from extremely under-determined single-shot tomographic

projections. Moreover, we propose a primal-dual algorithm to find an approximately
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optimal solution to CoShaRP quickly. The numerical results demonstrate that (i)

the resolution limit to sense the shape depends on the number of measurements, (ii)

CoShaRP is insensitive to the number of repetitions of the shape and the number of

possible rotations of the shape, (iii) CoShaRP can sense the non-homogeneous as well

as non-convex shapes, (iv) CoShaRP tolerates only a moderate amount of measurement

noise.

The limitations of CoShaRP are as follows: (i) The roto-translations of the shapes

must be included in the dictionary for the exact recovery of the target image. This

inclusion requirement makes CoShaRP a computationally expensive approach due to

the large dictionary size. (ii) CoShaRP also requires the correct knowledge of shapes

and their intensity. If the shape is not known accurately, the CoShaRP may fail. (iii)

CoShaRP relies on the knowledge of total number of shapes in the target image. If

unknown, its estimation may be a costly procedure due to repeated solving of CoShaRP

for various estimates.
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