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Abstract 

Direct experimental measurement of thermal expansion coefficient without substrate effects is a 

challenging task for 2D materials and its accurate estimation with large-scale ab initio molecular 

dynamics is computationally very expensive. Machine learning based interatomic potentials trained 

with ab initio data have been successfully used in molecular dynamics simulations to decrease the 

computational cost without compromising the accuracy. In this study, we investigated using Gaussian 

Approximation Potentials to reproduce the density functional theory level accuracy for graphene 

within both lattice dynamical and molecular dynamical methods, and to extend their applicability to 

larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which 

was trained with pristine graphene structures, is found to give closer results to density functional 

theory calculations at different scales. Further vibrational and structural analysis verify that the same 

conclusions can be deduced with density functional theory level in terms of the reasoning of the 

thermal expansion behavior and the negative thermal expansion behavior is associated with the long 

range out of plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by 

machine learning potentials may even enhance the accuracy compared to small size limited ab initio 

molecular dynamics.  
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Introduction 

Graphene, a monolayer structure having a single-layer of sp2 hybridized carbon atoms, has attracted the 

attention of both academia and industry since its successful isolation,1 thanks to its fascinating physical 

properties2–4 and rich potential for application to next-generation device technologies5–7. The thermal expansion 

coefficient (TEC) of graphene is one of the most important thermodynamic characteristics in determining the 

performance of graphene-based devices and in modulating the electronic properties of graphene. Unfortunately, 

experimental8–15 and theoretical16,17,26,18–25 studies have reported diverse results such as all-negative9,10,13,15–18,26, 

all-positive11,24–26, or sign-changing8,12,26,14,19–25 variations regarding the TEC of graphene. The variety in these 

results is generally attributed to the insufficient representation of the anharmonicity for theoretical studies,27–29 

which is especially strong for two-dimensional crystals23. On the other hand, the unwanted substrate effects and 

the transparency of 2D materials makes conventional optical approaches difficult for the experimental studies.30 

The first experimental TEC measurement of graphene was carried out by Bao et al.8 using the scanning electronic 

microscopy. They found that the graphene’s TEC has a negative value at low temperatures (with a room 
temperature value of −7 × 10−6 K−1) and a sign change to positive at around 350𝐾 for temperatures between 300 K and 400 K. Yoon et al.10 measured a negative TEC for all temperature range (200 − 400 K) with a room 

temperature value of (−8 ± 0.7) × 10−6 K−1 using Raman spectroscopy. However, Linas et al.11 reported all 

positive TEC values above room temperature by using Raman scattering measurements for graphene deposited 

on silicon nitride substrates in the temperature range 150 − 800 K. On the theoretical side, using first-principles 

based on the density-functional perturbation theory and quasi-harmonic approximation simulations, Mounet 

and Marzari16 reported that the TEC of graphene is negative up to 2500 K and is around −3.6 × 10−6 K−1 as 

approximately two times smaller than the experimental measurements at room temperature. With analytical 

and numerical lattice dynamical methods, Michel et al.20 found that the transition temperature of the change 

from negative to positive TEC is lowered and close to 300 K for systems of macroscopic size, as a consequence 

of the corresponding change of the dispersion of the flexural mode at long wavelengths. Furthermore, Sevik17, 

Kim et al.18, and Mann et al.19 reported similar results as [19] obtained by using quasi-harmonic approximation 

(QHA). In addition to these vibrational studies, classical molecular dynamics simulations that uses empirically 

parameterized inter-atomic potentials, which allow large system sizes, are also used to determine the TEC of 

graphene23–26. For example, in calculations made using atomistic Monte Carlo simulations by Zakharchenko et 

al.23, the TEC of graphene exhibit a crossover from negative to positive at near 900 K and the average value to 

be −4.8 × 10−6 K−1between the temperature ranges 0 − 300 K. Moreover, using Monte Carlo simulations, 

Magnin et al.26 carried out the MD calculations with several  potentials covering empirical to semiempirical bond-

order types, as well as a model based on tight-binding theory. However, they reported that the TEC resulting 

from these variations remain positive below 2000 K, unlike existing experimental measurements8–11. That is 

probably because the empirical inter-atomic potentials are not usually sufficiently accurate and transferable to 

describe other physical properties of the material in question simultaneously other than the property they were 

built-in for. More accurate calculations need quantum mechanical description in MD simulations, however, these 

types of calculations are computationally very demanding and limited by reduced system sizes. 

Nowadays, it is claimed that the interatomic interactions can be defined with high accuracy thanks to the 

machine learning potentials such as Neural Network Potentials31, Gaussian Approximation Potential (GAP)32, 

Spectral Neighbor Analysis Potential33, Moment Tensor Potentials34. Consequently, more accurate results can be 

obtained theoretically for the properties of the materials, such as TEC, which usually requires simulating large 

system sizes. For the last few years, different working groups have started developing machine learning 

potentials for graphene35–41. However, it is still not clear whether these machine learning potentials could reach 

the accuracy required for thermal properties. In this context, we discuss the efficiency of one of the promising 

machine learning potentials developed for graphene by Rowe et al.35 based on GAP method. This potential 

reproduces the accuracy of ab initio density functional theory (DFT) calculations better than the more recent 

GAP potential36 trained to a variety of carbon structures. For this purpose, we conducted lattice dynamics and 

molecular dynamics calculations to estimate TEC of graphene.  

 



Methods 

In this article, we estimate the TEC of graphene by three different methods: I) Quasi harmonic approximation 

(QHA) by minimizing Helmholtz energies at corresponding temperatures, II) Grüneisen framework by calculating 

mode-dependent Grüneisen parameters, and III) molecular dynamic (MD) simulations by comparing the in-plane 

area on different temperature runs. All calculations were done with two GAP models for carbon (denoted GAP17 

and GAP20) and PBE exchange-correlation DFT functional as their energy basis for comparison. The details of the 

GAP models were taken from the ref 35 (GAP17) and ref 36 (GAP20), and the parameter files of both models 

were obtained from http://www.libatoms.org website (visited in August 2020). For DFT calculations, Local 

density approximation42 and projector augmented wave43,44 methods are used together with 500 eV plane wave 

basis cutoff-energy within the Vienna ab initio simulation package (VASP)45,46. The PHONOPY code47 is used 

extensively for the vibrational analysis together with in-house codes to further analysis and fitting. In the part of 

QHA and Grüneisen framework, 8×8×1 conventional supercell structure and 4×4×1 Γ centered k-points grid were 

considered. The MD simulations with GAP models were performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS)48,49, with 5 × 105 time steps (𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 0.5 fs) in NPT ensemble. The 

first 50 ps was considered as the process of reaching the thermal equilibrium and the TEC calculations were 

carried out over the last 200 ps. The MD simulations for graphene structures were performed in 3D box type 

simulation cells containing 448, 1008, 2232, 4032, and 6240 atoms, with widths approximately 3.4, 5.1, 7.6, 10.3, 

and 12.8 nm, respectively. In z-direction, 2 nm vacuum space is used to eliminate spurious periodic interactions. 

Isothermal-isobaric (NPT)50,51 ensemble have been selected for ab-initio molecular dynamics52,53 (MD) 

simulations as well. All ab-initio MD simulations lasted at least 8 ps with a time step of 1 fs. In all NPT MD 

simulations, �⃗� and �⃗�  vectors are relaxed seperately while the 𝑧 axis is kept fixed.” 

Results & Discussion  

Calculated phonon dispersion relations given in Figure 1a shows that both GAP models match qualitatively well 

with the DFT. There is a good overlap of acoustic modes while the optic modes deviate slightly. Quantitatively, 

the average difference of the calculated phonon frequencies with DFT is 2.73 and 4.14 meV, while the maximum 

deviation from DFT is 8.05 meV and 13.03 meV for GAP17 and GAP20, respectively. According to these results, 

GAP17 predicts phonon frequencies closer to the DFT than GAP20. This relatively good match with DFT also holds 

for our calculations in compressed and strained supercells. The average difference with DFT for GAP17 (GAP20) 

is 2.78 meV (4.15 meV) when compressed by 1% and 2.74 meV (2.64 meV) when strained by 1%. Although in 

strained case the average differences for GAP20 is less than for GAP17, the maximum deviations are always larger 

for GAP20 case by around 3-4 meV. Similar to the DFT case, both GAP models also predict imaginary frequencies 

for ZA mode near to the Γ point of the Brillouin zone when the graphene is compressed (see Figure 1b). In general, 

the frequencies for the lowest energy mode (ZA) decreases with the compression and increases with the positive 

strain as in the DFT case. How the phonon frequencies change with respect to strain is important as they are 

used in the estimation of TEC by the QHA. However, negative phonon frequencies are a big problem here as they 

are not valid in QHA. Moreover, the acoustic phonons, especially the ZA mode, near the  Γ point is known to be 

crucial in determining thermal properties of layered materials.54 Thus, we fit the lowest energy frequencies (ZA 

mode) in the compressed cases by using the linear behavior of the strained cases. However, in general the 

behavior deviates from linearity with the increase in strain, thus limits our QHA approach within the linear regime 

(up to ±1.5% strain). We checked the validity of fitting the vibrational frequencies by comparing all the modes 

reproduced (dashed lines in Figure 1b) to the original ones and apart from the imaginary frequencies close to the 

Γ point in ZA mode, all other phonon frequencies are reproduced with relatively good accuracy with linear fitting 

up to −1.5% strain and more deviations starts thereafter (see Supplementary Figure S1). 

Alternative to the QHA, Grüneisen framework can be used as well to estimate TEC. Mode Grüneisen parameters (𝛾𝑞,𝑗),which are often used as a heuristic method to quantify anharmonicity, basically are the strain dependence 

of phonon frequencies: 

𝛾𝑞,𝑗 = −𝑎0𝜔𝑞,𝑗 𝜕𝜔𝑞,𝑗𝜕𝑎  

http://www.libatoms.org/


where 𝑎0 is the unit cell constant, 𝜔𝑞,𝑗  is the vibrational frequency corresponding to wave vector 𝑞 and mode 𝑗. 

Within Grüneisen framework, TEC (𝛼) can be estimated by using mode-dependent Grüneisen parameters via the 

mean Grüneisen parameter (𝛾𝑚𝑒𝑎𝑛) as: 

𝛼 = 𝛾𝑚𝑒𝑎𝑛𝐶𝑉𝐵𝑇𝑉0 |𝑎,𝑇 

where 𝑐𝑞,𝑗  is the mode specific heat, 𝐶𝑉 is the heat capacity, 𝐵𝑇  is the bulk modulus and the (𝛾𝑚𝑒𝑎𝑛) can be 

obtained from the mode-dependent Grüneisen parameters by: 

𝛾𝑚𝑒𝑎𝑛 ≡ ∑ 𝛾𝑞,𝑗𝑐𝑞,𝑗𝑞,𝑗∑ 𝑐𝑞,𝑗𝑞,𝑗  

Mode Grüneisen parameters calculated over a 100 × 100 𝑞-mesh are given in Figure 2 for both GAP models and 

DFT. Apart from the small deviations for TA and LA acoustic branches around Γ point, GAP17 model reproduces 
the mode Grüneisen parameters very accurately from the DFT. In general, the ZA branch (the out of plane 

vibration) is the main negative contributor while the optic branches are condensed slightly above 0 for both 

GAP17 model and DFT. On the other hand, GAP20 model overestimates the negative contributions of TA and LA 

modes. 

The calculated TEC curves between 50-600 K are given in Figure 3. For GAP17 model the TEC curves obtained 

from Grüneisen framework and QHA are very close, while there is larger difference between them for DFT and 

GAP20 model. For GAP17 model, the lowest TEC values are obtained at around 220 K as −5.88 × 10−6 K−1 and 

−5.63 × 10−6 K−1, while the values increase to −5.61 × 10−6 K−1 and −5.42 × 10−6 K−1 at room temperature for QHA 

and Grüneisen framework, respectively. When compared to DFT the behavior of TEC is almost the same while 

the values for GAP17 model are slightly higher (less negative thermal expansion) for both QHA and Grüneisen 

framework. The lowest TEC values are obtained at 240 K in the DFT case. The difference to GAP17 model is found 

to be higher for the QHA than Grüneisen, which is attributed to the nonlinear behavior of phonon frequencies 

are not as well represented in GAP17 model for the highly strained cases (1% - 1.5%) as it is trained mainly around 

to the optimized graphene monolayer and thus it is more accurate close to the ground state graphene. On the 

other hand, GAP20 model, which is trained to a variety of carbon structures, overestimate the TEC for QHA and 

Grüneisen framework by a large margin.  

As a last method to estimate TEC, we used MD simulations with both GAP models and compared it to DFT. In this 

part of the study, we focused more on GAP17 model as it reproduces DFT with better accuracy due to more 

specialized training parameters; GAP17 was produced with graphene structures. Moreover, the MD and the 

lattice dynamics TEC results are inconsistent for GAP20 model while they are more consistent for GAP17 model 

(see Figure 3c and 3d). For example, when we compare the average TEC differences between the values from 

6240 atom MD simulations and from the QHA calculations, there is 0.84 × 10−6 K−1 difference for GAP17 while 

there is 4.32 × 10−6 K−1 for GAP20 in the considered 50-600 K temperature range. In MD simulations, we tracked 

the in-plane area of graphene monolayer and through evaluation of the system with temperature we observed 

that the in-plane area is decreasing with the increasing temperature, which is the basis of the negative thermal 

expansion behavior. The in-plane area values are calculated as the area between the unit cell vectors �⃗� and �⃗� 

and then averaged over the simulation time (see Supplementary Figure S2 for the example fluctuations of �⃗� and �⃗�). The area values are then used to calculate the TEC after fitting to cubic splines to smooth out the noise coming 

from single temperature runs: 

𝛼 = 1𝐴(𝑇) 𝑑𝐴(𝑇)𝑑𝑇  

where 𝐴(𝑇) is the smoothed Area under temperature 𝑇. To allow the comparison of different supercell sizes the 

Normalized Area values (𝐴/𝐴0 , where 𝐴0 is the in plane area of relaxed system) are given in Figure 3a and 3b 

which shows the in-plane contraction with the increasing temperature. The degree of the contraction is lower 

for the smaller supercell as it constrains the larger in-plane vibrations but should converge with the increasing 

supercell size. Here, the system size is raised up to 6240 atoms to ensure the convergence. Keep in mind that 



these system sizes are almost impossible for DFT calculations. We performed DFT MD calculations within our 

computational limits up to 448 atoms.  

In general, the MD method is expected to be more accurate than lattice dynamics methods in TEC estimation as 

it incorporates full anharmonic interactions. However, the system size becomes here as a bottleneck, which may 

constrain the long wavelength out of plane oscillations. When we compare the TEC obtained from GAP17 model 

MD (6240 atom) to DFT, we see a decrease in the thermal expansion behavior, which the extent is probably 

missed by the smaller sized DFT supercells (see Figure 3c). Furthermore, when we compare the TEC obtained 

from MD simulations (−4.5 × 10−6 K−1 at RT), it is slightly lower in magnitude than obtained from lattice dynamics 

methods (~ −5.5 × 10−6 K−1 at RT). Altogether, these values are slightly lower in magnitude than the experimental 

values reported by Bao et al. (−7 × 10−6 K−1 at RT)8 and Yoon et al. (−8 × 10−6 K−1 at RT)10, however, those values 

are consistent  with another recent experimental study of Pan et al. (−5.5 × 10−6 K−1 at RT)15 which discards the 

substrate effect. We assume that it is quite probable in the former experimental studies that the TEC becomes 

positive quite rapidly at around 400 K due to the substrate effects as other experimental and theoretical studies 

in general confirm a more moderate increase in the TEC with a lower slope around RT.9,15–17,23 

The MD simulations also allow a closer inspection on the structural origin of the thermal contraction by statistical 

analysis such as radial distribution function and variance in atomic coordinates. Especially the z-axis variance on 

the coordinates can give a statistical picture of the rippling behavior (see Figure 4a) of the graphene monolayers. 

The radial distribution analysis shows that the C-C bond lengths increase with the temperature (see Figure 4b) 

contrary to the expected decrease for a contraction behavior. Moreover, both GAP17 model and DFT MD 

simulations predict the same C-C bond length versus temperature trend regardless of the system size (see Figure 

4c). On the other hand, the variance in z-axis coordinates of the carbon atoms increases with the temperature, 

which results in a decrease in the in-plane area of the graphene monolayer despite the increasing C-C bond 

lengths. In a lattice dynamical perspective, this rippling behavior is the outcome of the excitations of out of plane 

phonon vibrations, in particular ZA mode. This is also consistent with the differences in the extent of the rippling 

behavior changing with the system size, i.e. the smaller unit cell sizes hinder the long wavelength excitations. 

Thus, the GAP17 model may even improve the accuracy in MD simulations as it allows much larger system sizes 

than DFT without compromising the accuracy. However, it should be also noted that the same size GAP17 MD 

calculation (448-atom) underestimates the TEC compared to DFT which hints the lower accuracy of GAP17 at low 

system sizes. 

The main advantage of ML based interatomic potentials is the reduced computational time compared to ab initio 

MD simulations. Table 1 summarizes the average computational times taken in our computer system both for 

DFT and GAP models MD simulations on the same computer architecture (Intel Xeon CPU E5-2680 v4 2.40 GHz, 

128GB memory). Keep in mind that the system sizes are already different and ~1000 atoms are out of reach for 

DFT MD simulations in our systems as the limiting computational resources are not only time but also memory 

and the processing power. Starting with the 240-atom size DFT MD simulations, we needed to use multiple CPU 

nodes to meet the memory requirements. Moreover, simulation lengths are also order of magnitude different: 

in DFT we were limited by 10000 steps (10 ps) while 500000 steps (0.25 ns) are used in GAP model MD 

simulations. For GAP models, simulation times increase linearly with the increasing system size, however for DFT, 

simulation times expand quite rapidly despite using a greater number of CPUs. We also note that computational 

time scales linearly with the system size for the GAP calculations, while it scales cubically for the DFT calculations. 

Conclusions 

In summary, in this study we investigated the accuracy of the machine learning GAP models in the TEC estimation 

of graphene. The one-to-one comparison of phonon frequencies hint that the GAP models catches the lattice 

dynamics of graphene very well, especially with GAP17 model. Thus, the TEC estimation from the Grüneisen 

framework is the closest to the DFT calculated value. On the other hand, there are larger differences in QHA due 

to the non-linear behavior of the vibrational frequencies at the limits in the selected strain range. The molecular 

dynamical simulations show that GAP17 model captures the origin of the thermal expansion similar to the DFT 

level calculations. The negative thermal expansion is associated with the rippling behavior caused by the out of 

plane vibrations (ZA mode) as the C-C bond lengths increase with the increasing temperature. 
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Figure 1. a) Phonon dispersion relations of relaxed graphene monolayers by DFT, GAP17 and GAP20 models. b) 

Phonon dispersion relations of relaxed, 1% strained and 1% compressed graphene monolayers by GAP17 model 

compared to DFT. Dashed line shows the corrected phonon curves of the compressed case. 



 

 

Figure 2. Calculated mode Grüneisen parameters for DFT, GAP17 and GAP20 models over a 100 × 100 𝑞-mesh. 

 

 



 

Figure 3. a) Normalized Area versus simulation temperature for molecular dynamics calculations with DFT, GAP17 

and GAP20 models. b) Normalized Area versus simulation temperature for molecular dynamics calculations 

GAP17 model w.r.t system size.  c) Calculated thermal expansion coefficients of graphene by MD simulations 

with DFT, GAP17 and GAP20 models. d) Calculated thermal expansion coefficients of graphene QHA and 

Grüneisen framework with GAP models and DFT.  

 

 



 

Figure 4. a) Side view of graphene monolayer within a MD frame demonstrating the rippling behavior. b) 

Structural analysis of 6240-atom graphene system obtained from MD simulations with GAP17 model. The bond 

length distribution is given in horizontal axis while the position distribution on z-axis is given in vertical axis 

against the number of occurrences. c) Normalized bond lengths versus temperature and rippling width versus 

temperature graphs of graphene obtained from MD simulations. Rippling width is calculated as 2𝜎 from the 

standard deviation of the position distribution on z-axis and the bondlenghts are normalized by using the 

bondlength of the relaxed system (d0). 



Table 1. Average simulation times for simulations performed with GAP models and DFT on the same computer 

architecture: 

Method System size # of steps # of CPU Total time Time per step 

DFT 112-atom 10000 28 (1 node) 71 hours 26 s 

DFT 240-atom 10000 56 (2 nodes) 170 hours 61 s 

DFT 336-atom 10000 84 (3 nodes) 293 hours 106 s 

DFT 448-atom 10000 112 (4 nodes) 574 hours 207 s 

GAP 448-atom 500000 28 (1 node) 18 hours 0.2 s 

GAP 1008-atom 500000 28 (1 node) 38 hours 0.4 s 

GAP 2232-atom 500000 28 (1 node) 84 hours 0.7 s 

GAP 4032-atom 500000 28 (1 node) 150 hours 1.1 s 

GAP 6240-atom 500000 28 (1 node) 240 hours 1.7 s 
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