toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wozniak, T.; Faria, P.E., Jr.; Seifert, G.; Chaves, A.; Kunstmann, J. url  doi
openurl 
  Title Exciton g factors of van der Waals heterostructures from first-principles calculations Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 23 Pages 235408-235411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows us to assign measured g factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537315100009 Publication Date 2020-06-03  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170219 Serial 7944  
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C. url  doi
openurl 
  Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 8 Pages 085430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620346100007 Publication Date 2021-02-22  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176671 Serial 7956  
Permanent link to this record
 

 
Author Shayeganfar, F.; Vasu, K.S.; Nair, R.R.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Monolayer alkali and transition-metal monoxides : MgO, CaO, MnO, and NiO Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal  
  Volume 95 Issue 14 Pages 144109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional crystals with strong interactions between layers has attracted increasing attention in recent years in a variety of fields. In particular, the growth of a single layer of oxide materials (e.g., MgO, CaO, NiO, and MnO) over metallic substrates were found to display different physical properties than their bulk. In this study, we report on the physical properties of a single layer of metallic oxide materials and compare their properties with their bulk and other two-dimensional (2D) crystals. We found that the planar structure of metallic monoxides are unstable whereas the buckled structures are thermodynamically stable. Also, the 2D-MnO and NiO exhibit different magnetic (ferromagnetic) and optical properties than their bulk, whereas band-gap energy and linear stiffness are found to be decreasing from NiO to MgO. Our findings provide insight into oxide thin-film technology applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399792400001 Publication Date 2017-04-20  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 21 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152654 Serial 8278  
Permanent link to this record
 

 
Author Chaves, A.; Sousa, G.O.; Khaliji, K.; da Costa, D.R.; Farias, G.A.; Low, T. url  doi
openurl 
  Title Signatures of subband excitons in few-layer black phosphorus Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 16 Pages 165428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experimental measurements of light absorption in few-layer black phosphorus (BP) revealed a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in few-layer BP within a continuum approach for the in-plane degrees of freedom and a tight-binding approximation that accounts for interlayer couplings. This yields excitonic transitions between different combinations of the subbands created by the coupled BP layers, which leads to a series of high and low oscillator strength excitonic states, consistent with the experimentally observed bright and dark exciton peaks, respectively. The main characteristics of such subband exciton states, as well as the possibility to control their energies and oscillator strengths via applied electric and magnetic fields, are discussed, towards a full understanding of the excitonic spectrum of few-layer BP and its tunability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000647175200002 Publication Date 2021-04-28  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:178384 Serial 8523  
Permanent link to this record
 

 
Author Mobaraki, A.; Sevik, C.; Yapicioglu, H.; Cakir, D.; Gulseren, O. doi  openurl
  Title Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 3 Pages 035402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Predicting the mechanical and thermal properties of quasi-two-dimensional (2D) transition metal dichalco-genides (TMDs) is an essential task necessary for their implementation in device applications. Although rigorous density-functional-theory-based calculations are able to predict mechanical and electronic properties, mostly they are limited to zero temperature. Classical molecular dynamics facilitates the investigation of temperature-dependent properties, but its performance highly depends on the potential used for defining interactions between the atoms. In this study, we calculated temperature-dependent phonon properties of single-layer TMDs, namely, MoS2, MoSe2, WS2, and WSe2, by utilizing Stillinger-Weber-type potentials with optimized sets of parameters with respect to the first-principles results. The phonon lifetimes and contribution of each phonon mode in thermal conductivities in these monolayer crystals are systematically investigated by means of the spectralenergy-density method based on molecular dynamics simulations. The obtained results from this approach are in good agreement with previously available results from the Green-Kubo method. Moreover, detailed analysis of lattice thermal conductivity, including temperature-dependent mode decomposition through the entire Brillouin zone, shed more light on the thermal properties of these 2D crystals. The LA and TA acoustic branches contribute most to the lattice thermal conductivity, while ZA mode contribution is less because of the quadratic dispersion around the Brillouin zone center, particularly in MoSe2 due to the phonon anharmonicity, evident from the redshift, especially in optical modes, by increasing temperature. For all the considered 2D crystals, the phonon lifetime values are compelled by transition metal atoms, whereas the group velocity spectrum is dictated by chalcogen atoms. Overall, the lattice thermal conductivity is linearly proportional with inverse temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473536400003 Publication Date 2019-07-02  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193764 Serial 8645  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title High Chern number in strained thin films of dilute magnetic topological insulators Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195119-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall effect was first observed experimentally by doping the Bi2Se3 materials family with chromium, where 5% doping induces an exchange field of around 0.1 eV. In ultrathin films, a topological phase transition from a normal insulator to a Chern insulator can be induced with an exchange field proportional to the hybridization gap. Subsequent transitions to states with higher Chern numbers require an exchange field larger than the (bulk) band gap, but are prohibited in practice by the detrimental effects of higher doping levels. Here, we show that threshold doping for these phase transitions in thin films is controllable by strain. As a consequence, higher Chern states can be reached with experimentally feasible doping, sufficiently dilute for the topological insulator to remain structurally stable. Such a facilitated realization of higher Chern insulators opens prospects for multichannel quantum computing, higher-capacity circuit interconnects, and energy-efficient electronic devices at elevated temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995111000003 Publication Date 2023-05-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197295 Serial 8820  
Permanent link to this record
 

 
Author Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Multiband flattening and linear Dirac band structure in graphene with impurities Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 7 Pages 075401-75408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994364500006 Publication Date 2023-02-02  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197431 Serial 8822  
Permanent link to this record
 

 
Author Zuniga-Puelles, E.; Levytskyi, V.; Özden, A.; Guerel, T.; Bulut, N.; Himcinschi, C.; Sevik, C.; Kortus, J.; Gumeniuk, R. doi  openurl
  Title Thermoelectric properties and scattering mechanisms in natural PbS Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195203-195215  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract X-ray diffraction and energy dispersive x-ray spectroscopic analyses showed a natural galena (PbS) crystal from Freiberg in Saxony (Germany) to be a single phase specimen [rock salt (NaCl) structure type, space group Fm3m, a = 5.932(1) angstrom] with stoichiometric composition and an enhanced dislocation density (8 approximate to 1011 cm-2). The latter parameter leads to an increase of the electrical resistivity in the high-temperature regime, as well as to the appearance of phonon resonance with a characteristic frequency coPR = 3.8(1) THz. Being in the same range (i.e., 3-5.5 THz) with the sulfur optical modes of highest group velocities, it results in a drastic reduction (by similar to 75%) of thermal conductivity (K) at lower temperatures (i.e., < 100 K), as well as in the appearance of a characteristic minimum in K at T approximate to 30 K. Furthermore, the studied galena is characterized by phonon-drag behavior and by temperature dependent switch of the charge carrier scattering mechanism regime (i.e., scattering on dislocations for T < 100 K, on acoustic phonons for 100 K < T < 170 K and on both acoustic and optical phonons for 170 K < T < 300 K). The combined theoretical calculation and optical spectroscopic study confirm this mineral to be a direct gap degenerate semiconductor. The possible origins of the second-order Raman spectrum are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009980400008 Publication Date 2023-05-30  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:197808 Serial 8943  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Stosic, D.; Mulkers, J.; Van Waeyenberge, B.; Ludermir, T.B.; Milošević, M.V. url  doi
openurl 
  Title Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 21 Pages 214418  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetic skyrmions are topological spin configurations in materials with chiral Dzyaloshinskii-Moriya interaction (DMI), that are potentially useful for storing or processing information. To date, DMI has been found in few bulk materials, but can also be induced in atomically thin magnetic films in contact with surfaces with large spin-orbit interactions. Recent experiments have reported that isolated magnetic skyrmions can be stabilized even near room temperature in few-atom-thick magnetic layers sandwiched between materials that provide asymmetric spin-orbit coupling. Here we present the minimum-energy path analysis of three distinct mechanisms for the skyrmion collapse, based on ab initio input and the performed atomic-spin simulations. We focus on the stability of a skyrmion in three atomic layers of Co, either epitaxial on the Pt(111) surface or within a hybrid multilayer where DMI nontrivially varies per monolayer due to competition between different symmetry breaking from two sides of the Co film. In laterally finite systems, their constrained geometry causes poor thermal stability of the skyrmion toward collapse at the boundary, which we show to be resolved by designing the high-DMI structure within an extended film with lower or no DMI.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404015500001 Publication Date 2017-06-23  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 48 Open Access  
  Notes This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:144865 Serial 4704  
Permanent link to this record
 

 
Author Callewaert, V.; Saniz, R.; Barbiellini, B.; Bansil, A.; Partoens, B. pdf  url
doi  openurl
  Title Application of the weighted-density approximation to the accurate description of electron-positron correlation effects in materials Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 8 Pages 085135  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We discuss positron-annihilation lifetimes for a set of illustrative bulk materials within the framework of the weighted-density approximation (WDA). The WDA can correctly describe electron-positron correlations in strongly inhomogeneous systems, such as surfaces, where the applicability of (semi-)local approximations is limited. We analyze the WDA in detail and show that the electrons which cannot screen external charges efficiently, such as the core electrons, cannot be treated accurately via the pair correlation of the homogeneous electron gas. We discuss how this problem can be addressed by reducing the screening in the homogeneous electron gas by adding terms depending on the gradient of the electron density. Further improvements are obtained when core electrons are treated within the LDA and the valence electron using the WDA. Finally, we discuss a semiempirical WDA-based approach in which a sum rule is imposed to reproduce the experimental lifetimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408342600003 Publication Date 2017-08-24  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G. 0224.14N ; U.S. Department of Energy, DE-FG02-07ER46352 DE-AC02-05CH11231 DE-SC0012575 ; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:145703 Serial 4703  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Magnetic field dependence of energy levels in biased bilayer graphene quantum dots Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 085401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we study the influence of a perpendicular magnetic field on the energy levels of hexagonal, triangular, and circular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We obtain the energy levels for AB (Bernal)-stacked BLG QDs in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). We find different regions in the spectrum of biased QDs with respect to the crossing point between the lowest-electron and -hole Landau levels of a biased BLG sheet. Those different regions correspond to electron states that are localized at the center, edge, or corner of the BLG QD. Quantum Hall corner states are found to be absent in circular BLG QDs. The spatial symmetry of the carrier density distribution is related to the symmetry of the confinement potential, the position of zigzag edges, and the presence or absence of interlayer inversion symmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369402400008 Publication Date 2016-02-01  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the Process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836  
  Call Number c:irua:131623 Serial 4038  
Permanent link to this record
 

 
Author Covaci, L.; Marsiglio, F. doi  openurl
  Title Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 73 Issue 1 Pages 014503  
  Keywords A1 Journal article  
  Abstract Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an unusually large proximity effect. Using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian we describe the proximity effect in weak links between a superconductor with critical temperature T-c and one with critical temperature T-c('), where T-c > T-c('). The weak link (N-') is therefore a superconductor above its own critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than T-c(') for sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence length. Considering pockets of superconductivity in the N-' layer, we show that this can lead to an even larger effect on the Josephson critical current by effectively shortening the weak link.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000235009000103 Publication Date 2006-01-03  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ Serial 4427  
Permanent link to this record
 

 
Author Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M.V. url  doi
openurl 
  Title Anisotropic type-I superconductivity and anomalous superfluid density in OsB2 Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 144506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a microscopic study of superconductivity in OsB2 , and discuss the origin and characteristic length

scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different

Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the

found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations

to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare

property among compound materials. We show that the found coherence length and penetration depth corroborate

the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using

anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but

anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional

behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals

that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed

solely to a two-gap nature of superconductivity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385622500009 Publication Date 2016-10-12  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek; European Cooperation in Science and Technology, MP1201 ; Vetenskapsrådet; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:139020 Serial 4338  
Permanent link to this record
 

 
Author Doğan, F.; Covaci, L.; Kim, W.; Marsiglio, F. doi  openurl
  Title Emerging nonequilibrium bound state in spin-current–local-spin scattering Type A1 Journal article
  Year 2009 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 80 Issue 10 Pages 104434  
  Keywords A1 Journal article  
  Abstract Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A consequence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering properties for this type of system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000270383100077 Publication Date 2009-09-25  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ Serial 4436  
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F. doi  openurl
  Title Impurity scattering of wave packets on a lattice Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 74 Issue 20 Pages 205120  
  Keywords A1 Journal article  
  Abstract Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we examine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000242409400030 Publication Date 2006-11-27  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ Serial 4428  
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F. doi  openurl
  Title Hidden symmetries of electronic transport in a disordered one-dimensional lattice Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 73 Issue 19 Pages 195109  
  Keywords A1 Journal article  
  Abstract Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000237950400042 Publication Date 2006-05-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ Serial 4429  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 144401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399382100003 Publication Date 2017-04-03  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 60 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G098917N ; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141917 Serial 4534  
Permanent link to this record
 

 
Author N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton url  doi
openurl 
  Title Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices Type A1 Journal Article
  Year 2014 Publication Physical Review B Abbreviated Journal  
  Volume 90 Issue Pages 195140  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The interfacial atomic structure of a metallic LaNiO3/LaAlO3 superlattice grown on a LaSrAlO4 substrate was

investigated using a combination of atomically resolved electron energy loss spectroscopy (EELS) at the Al K,

Al L2,3, Sr L2,3, Ni L2,3, La M4,5, and O K edges as well as hybridization mapping of selected features of the O

K-edge fine structure.We observe an additional La1−xSrxAl1−yNiyO3 layer at the substrate-superlattice interface,

possibly linked to diffusion of Al and Sr into the growing film or a surface reconstruction due to Sr segregation.

The roughness of the LaNiO3/LaAlO3 interfaces is found to be on average around one pseudocubic unit cell. The

O K-edge EELS spectra revealed reduced spectral weight of the prepeak derived from Ni-O hybridized states in

the LaNiO3 layers. We rule out oxygen nonstoichiometry of the LaNiO3 layers and discuss changes in the Ni-O

hybridization due to heterostructuring as possible origin.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345467000003 Publication Date 2014-11-20  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 17 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4544  
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399140700012 Publication Date 2017-03-27  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:142431 Serial 4564  
Permanent link to this record
 

 
Author Kleibert, A.; Balan, A.; Yanes, R.; Derlet, P.M.; Vaz, C.A.F.; Timm, M.; Fraile Rodríguez, A.; Béché, A.; Verbeeck, J.; Dhaka, R.S.; Radovic, M.; Nowak, U.; Nolting, F. pdf  url
doi  openurl
  Title Direct observation of enhanced magnetism in individual size- and shape-selected 3d transition metal nanoparticles Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 195404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Magnetic nanoparticles are critical building blocks for future technologies ranging from nanomedicine to spintronics. Many related applications require nanoparticles with tailored magnetic properties. However, despite significant efforts undertaken towards this goal, a broad and poorly understood dispersion of magnetic properties is reported, even within monodisperse samples of the canonical ferromagnetic 3d transition metals. We address this issue by investigating the magnetism of a large number of size- and shape-selected, individual nanoparticles of Fe, Co, and Ni using a unique set of complementary characterization techniques. At room temperature, only superparamagnetic behavior is observed in our experiments for all Ni nanoparticles within the investigated sizes, which range from 8 to 20 nm. However, Fe and Co nanoparticles can exist in two distinct magnetic states at any size in this range: (i) a superparamagnetic state, as expected from the bulk and surface anisotropies known for the respective materials and as observed for Ni, and (ii) a state with unexpected stable magnetization at room temperature. This striking state is assigned to significant modifications of the magnetic properties arising from metastable lattice defects in the core of the nanoparticles, as concluded by calculations and atomic structural characterization. Also related with the structural defects, we find that the magnetic state of Fe and Co nanoparticles can be tuned by thermal treatment enabling one to tailor their magnetic properties for applications. This paper demonstrates the importance of complementary single particle investigations for a better understanding of nanoparticle magnetism and for full exploration of their potential for applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400665300002 Publication Date 2017-05-05  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access OpenAccess  
  Notes We thank A. Weber, R. Schelldorfer, and J. Krbanjevic (Paul Scherrer Institut) for technical assistance. This paper was supported by the Swiss Nanoscience Institute, University of Basel. A.F.R. acknowledges support from the MICIIN “Ramón y Cajal” Programme. A.B. and J.V. acknowledge funding from the European Union under the European Research Council (ERC) Starting Grant No. 278510 VORTEX and under a contract for Integrated Infrastructure Initiative ESTEEM2 No. 312483. R.Y. and U.N. thank the Deutsche Forschungsgemeinschaft for financial support via Sonderforschungsbereich 1214. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @ c:irua:143634UA @ admin @ c:irua:143634 Serial 4575  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M. url  doi
openurl 
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375527500001 Publication Date 2016-05-06  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M. url  doi
openurl 
  Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 9 Pages 094420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411161700002 Publication Date 2017-09-19  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access OpenAccess  
  Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @c:irua:146748 Serial 4774  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 10 Pages 104422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428238600006 Publication Date 2018-03-26  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915  
Permanent link to this record
 

 
Author Cavalcante, L.S.R.; Chaves, A.; Van Duppen, B.; Peeters, F.M.; Reichman, D.R. pdf  url
doi  openurl
  Title Electrostatics of electron-hole interactions in van der Waals heterostructures Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125427  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427983700007 Publication Date 2018-03-21  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes Discussions with A. Chernikov and A. Raja are gratefully acknowledged. This work has been financially supported by CNPq, through the PRONEX/FUNCAP, PQ, and Science Without Borders programs, and the FWO-CNPq bilateral program between Brazil and Flanders. B.V.D. acknowledges support from the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. D.R.R. was supported by NSF CHE-1464802. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150835UA @ admin @ c:irua:150835 Serial 4953  
Permanent link to this record
 

 
Author Bercx, M.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title Quantitative modeling of secondary electron emission from slow-ion bombardment on semiconductors Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 8 Pages 085413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When slow ions incident on a surface are neutralized, the excess potential energy is passed on to an electron inside the surface, leading to emission of secondary electrons. The microscopic description of this process, as

well as the calculation of the secondary electron yield, is a challenging problem due to its complexity as well

as its sensitivity to surface properties. One of the first quantitative descriptions was articulated in the 1950s by

Hagstrum, who based his calculation on a parametrization of the density of states of the material. In this paper, we

present a model for calculating the secondary electron yield, derived from Hagstrum’s initial approach. We use

first-principles density functional theory calculations to acquire the necessary input and introduce the concept of

electron cascades to Hagstrum’s model in order to improve the calculated spectra, as well as remove its reliance

on fitting parameters. We apply our model to He+ and Ne+ ions incident on Ge(111) and Si(111) and obtain

yield spectra that match closely to the experimental results of Hagstrum.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458367800010 Publication Date 2019-02-11  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access OpenAccess  
  Notes We would like to thank Prof. D. Depla for the useful discussions on the secondary electron yield. Furthermore, we acknowledge financial support of FWO-Vlaanderen through project G.0216.14N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWOVlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157174 Serial 5154  
Permanent link to this record
 

 
Author Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S. url  doi
openurl 
  Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages 235146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454160800004 Publication Date 2018-12-21  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:156784 Serial 5363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: