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Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F
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We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand
mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both
within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction
and Mössbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector
chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has
been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant
parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration
mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+

spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
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I. INTRODUCTION

Frustrated magnets [1–3] host a plethora of remarkable
collective phenomena, ranging from topological spin liq-
uids, long-range entanglement, and fractionalized excitations
[4–10], to emergent electrodynamics and magnetic monopoles
[11–13], and even to spin-induced ferroelectricity [14–16].
While the majority of geometrically frustrated magnets are
based on spin triangles (or tetrahedra in three dimensions),
pentagon-based magnets, which are far more difficult to
implement in real materials [17], are now attracting increasing
attention both in theory [18–27] and experiment [28–34].

The main interest so far has been in the Cairo pentagonal
lattice, a periodic arrangement of irregular pentagons with
two types of sites, one with threefold and the other with
fourfold connectivity (Fig. 1). Cairo-based models host various
phases of classical and quantum nature [24], magnetization
plateaus [22,24,26,27], and Kosterlitz-Thouless transitions
[22]. At present, there are two main realizations of this
lattice: Bi2Fe4O9 [28–31,34] and Bi4Fe5O13F [32]. A similar
pentagonal topology can also be identified in the multiferroics
RMn2O5 (R = Bi, Y, or rare earth) [35–42] that are renowned
for their complex interplay of commensurate and incommen-
surate magnetic orders with ferroelectricity.

The symmetric version of the Cairo Heisenberg model
has two exchange couplings, namely J33 and J43 [Fig. 1(a)].
It hosts three phases in the classical, large-S limit [24]: a
coplanar orthogonal phase [Fig. 1(b)], a collinear ferrimagnet,
and a mixed phase in between. Quantum fluctuations convert
the latter to a nonmagnetic and possibly spin-nematic phase
for S =1/2. Additionally, they introduce another collinear
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phase for small J43/J33 [24]. This phase features collinear
antiferromagnetic order on all fourfold sites and on half of
the threefold sites, with the remaining half being disordered
[Fig. 1(c)].

Bi2Fe4O9 and Bi4Fe5O13F feature dumbbells of the four-
fold sites. Two Fe1 atoms that comprise a dumbbell lie above
and below the Fe2 plane, centered at a nodal point of the
pentagonal lattice. Additionally, there are two inequivalent
couplings between fourfold and threefold sites, denoted by
J43 and J ′

43 (Fig. 1), but the classical phase diagram of this
extended model is qualitatively the same (Fig. 7). Furthermore,
the calculated interactions (reported here and in [25]) place the
two compounds nearly on the same spot in the phase diagram,
and deep inside the orthogonal phase. Despite this remarkable
similarity, the two Cairo materials show qualitatively different
behavior. Bi2Fe4O9 orders in the anticipated orthogonal state
below 238 K, but Bi4Fe5O13F, where Cairo planes are
interleaved by an additional layer of Fe3 sites, shows three
successive transitions at TN � 178 K, T2 � 71 K, and T1 �
62 K [32], with three distinct magnetically ordered states that
we refer to as phase I (T < T1), phase II (T1 < T < T2), and
phase III (T2 < T < TN ). Phase I is orthogonal [32], whereas
the nature of phases II and III is unknown to date.

In the following, we unravel the nature of these phases and
elucidate their origin. Our main findings are as follows:

(i) Phases I and III are both orthogonal and macroscopically
nonchiral, but with opposite local vector chiralities, as defined
in Fig. 1(b). Since the two states are degenerate at the level
of the isotropic Heisenberg model, anisotropy must play a
role.

(ii) The intermediate phase II features nearly collinear spins
and drastically reduced moments on half of the Fe2 sites,
reminiscent of the quantum collinear phase of [24]. This is
unexpected given the large, “classical” spin S = 5/2 and the
fact that we are far from the relevant corner of the phase
diagram (Fig. 7).
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FIG. 1. (a) The symmetric Cairo lattice with two exchange couplings, J33 and J43. (b),(c) Orthogonal and collinear phases. Note the zero
moment on half of the threefold sites in (c). The Fe1 sites 1–4 in (b) provide a measure of local vector chirality as χ = 〈�〉/|〈�〉|, where
� = S1 × S2 + S2 × S3 + S3 × S4 + S4 × S1. Note that χ is defined on the plaquette centered by the 4̄ rotoinversion axis (and vertical Fe21

dimers). The adjacent plaquettes have opposite chirality, but they are centered by the 42 screw axis (and horizontal Fe22 dimers) and thus
distinguished by symmetry. The overall magnetic structure is nonchiral. (d)–(f) Magnetic structures of Bi4Fe5O13F in phases I, II, and III,
respectively. The two types of J43 couplings are also indicated. The crystal and magnetic structures are visualized using VESTA [43].

(iii) The onset of phase II upon cooling coincides with a
significant growing of the magnetic moments on the interlayer
Fe3 sites, which sit between the Cairo planes and normally act
to mediate the three-dimensional (3D) ordering between the
planes, as, e.g., in Ref. [44].

(iv) Spin reorientation within the planes is accompanied by
a change of the interlayer order from ferromagnetic (phase I)
to antiferromagnetic (phase III).

While these features cannot be explained by any standard
frustration mechanism involving purely isotropic (Heisenberg)
interactions, our ab initio band-structure calculations reveal
sizable single-ion anisotropy on the interlayer Fe3+ spins.
The Fe3 spins are absent in Bi2Fe4O9 (where neighboring
planes couple directly to each other), so the emerging physical
picture is that the interlayer spins play a vital role for the order
within the planes. Specifically, the III → II → I transitions
can be understood as a reorientation of the nominally preferred
orthogonal state, from one orientation (phase III) that satisfies
the anisotropy on the in-plane spins to another orientation
(phase I) that satisfies the anisotropy on the interlayer Fe3
spins, and in between the system must necessarily go through
the quasicollinear phase II. This in-plane spin reorientation
is accompanied by a change in the interlayer order that
evolves from antiferromagnetic in phase III to ferromagnetic in
phase I.

II. MAGNETIC ORDER

All measurements were performed on single-phase poly-
crystalline samples of Bi4Fe5O13F prepared previously [32].
Neutron diffraction data were collected at the cold neutron
powder diffractometer DMC (LNS PSI, Villigen, Switzerland)
with a wavelength of 4.5082 Å in the T range of 1.5–200 K
in a He cryostat. The magnetic structures were refined by
the Rietveld method using the JANA2006 program [45]. The
symmetry analysis of possible magnetic configurations was
carried out in ISODISTORT [46].

Phases I–III share the same propagation vector k = ( 1
2 , 1

2 ,0).
The analysis of irreducible representations (irreps) for the
P 42/mbc nuclear structure with this propagation vector yields
six irreps. Their corresponding magnetic space groups and
allowed magnetic moment components for different positions
of the Fe atoms are listed in Table I. All these symmetries were
tested in the refinement of the T = 1.5 K magnetic structure.
The magnetic moments were found to be strictly confined to
the ab plane.

The solution was only possible with the mM−
5 irrep and

tetragonal magnetic space group PC42/n. This magnetic
structure can be described within the am = a − b, bm = a + b,
and cm = c magnetic supercell with five positions (Table II)
for the magnetic Fe atoms shown in Fig. 1. We use polar
angles ϕ to define orientations of magnetic moments within
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TABLE I. Irreducible representations of P 42/mbc for k =
( 1

2 , 1
2 ,0), order-parameter directions (OPD), magnetic space groups

(mSG), and allowed magnetic moment components for the Fe
positions (referred to the unit cell of the nuclear structure).

Irrep OPD mSG Fe1 Fe2 Fe3

mM+
1 M+

4 (a,b) PCccn {00z} {xy0} {00z}
mM+

2 M+
3 (a,b) PCnnn {00z} {xy0} none

mM+
5 (a,0) PC42/m {xy0} {00z} {xy0}

(a,a) PAmna {xy0} {00z} {xx0}
(a,b) Pa2/m {xy0} {00z} {xy0}

mM−
1 M−

4 (a,b) PCnnm {00z} {00z} {00z}
mM−

2 M−
3 (a,b) PCccm {00z} {00z} none

mM−
5 (a,0) PC42/n {xy0} {xy0} {xy0}

(a,a) PAnna {xy0} {xy0} {xx0}
(a,b) Pc2/c {xy0} {xy0} {xy0}

the plane, ma = μ cos ϕ and mb = μ sin ϕ along the am and
bm directions, respectively.

A. Phase I

At T = 1.5 K, two magnetic structures, A and B, are
possible, showing very similar arrangement of the magnetic
moments in the pentagonal layers (Fig. 2). These structures
can be transformed into each other by rotating all magnetic
moments for about 90◦. The main difference between these
structures is the orientation of a given Fe11 moment ap-
proximately along the am or bm direction of the magnetic
supercell. Although a and b (and thus am and bm) are
equivalent in the tetragonal structure, individual Cairo planes
lack tetragonal symmetry. Therefore, anisotropy renders a and
b distinguishable locally.

With our earlier HRPT data [32], models A and B produced
virtually the same refinement residuals. Model A was reported
as the magnetic structure in phase I [32], whereas model B
was regrettably overlooked in that study. With the DMC data
at hand, we can take advantage of the better resolution and
sensitivity, and select model B based on the lower refinement
residuals; compare Rnucl = 0.023, Rmag = 0.027, and RP =
0.055 for model A and Rnucl = 0.021, Rmag = 0.020, and
RP = 0.050 for model B. The choice of model B is further
corroborated by the analysis of magnetic anisotropy in Sec.
III B.

Phase I [Fig. 1(d)] is an orthogonal state, with spins on the
Fe11 and Fe12 sites as well as on the Fe21 and Fe22 sites being
mutually orthogonal. The interlayer ordering is ferromagnetic,

TABLE II. Fractional coordinates of the Fe atoms in the magnetic
supercell.

x/a y/b z/c

Fe11
1
4

1
4 0.0783

Fe12
1
4

3
4 0.0783

Fe11 0.0057 0.8429 0

Fe22 0.3429 0.0057 0

Fe3 1
4

1
4

1
4

FIG. 2. Distinct magnetic structures A and B at 1.5 K. The Cairo
planes at z = 1/2 are shown.

because Fe1 moments of the neighboring Cairo planes interact
via Fe3. The antiferromagnetic alignment of Fe1 and Fe3 gives
rise to the ferromagnetic arrangement of the Fe1 moments in
the adjacent layers. At 1.5 K, the moments are about 4.0μB

on the octahedrally coordinated Fe1 and Fe3 sites and 3.3μB

on the tetrahedrally coordinated Fe2 sites. This difference is
due to the stronger Fe–O hybridization for the tetrahedrally
coordinated Fe atoms.

B. Phase II

The propagation vector k = ( 1
2 , 1

2 ,0) is retained in the entire
T = 1.5–180 K temperature range. The refinements were
performed assuming that the magnetic structures follow the
same irrep and also maintain the order parameter direction
and magnetic space group, which would be consistent with
the weak first-order nature of the transitions at T1 and
T2 [32]. Satisfactory solutions were indeed found at all
temperatures.

As T increases toward T1, the Fe1 and Fe2 moments remain
roughly unchanged, whereas the moment on Fe3 decreases
significantly and drops below 2μB at 55 K (Fig. 3, left).
Upon further heating, the magnetic structure changes abruptly
entering phase II. All Fe1 sites preserve large moments of
3.2–3.8μB , whereas the Fe2 sites split into two groups. The
Fe22 moments increase to 3.8μB , whereas the Fe21 moments
decrease to about 1.2μB , only one-third of their 1.5 K value.

Magnetic moments directions change as well. The in-plane
magnetic structure of phase II resembles the quantum collinear
phase described in Ref. [24]. Deviations from collinearity are
due to the fact that J43 �= J ′

43. In this case, local fields on the
Fe21 site do not cancel, leading to the nonzero ordered moment
on Fe21 and, consequently, to the slight departure of the Fe11

and Fe12 moments from the direction of the Fe22 moment.
Therefore, our phase II can be regarded as an instance of the
collinear phase of the Cairo model for the imperfect realization
of this model in Bi4Fe5O13F [47]. The reasons behind the
formation of this phase are rather unusual, though, and will be
discussed in Sec. III B.

The second notable change upon the I → II transition is
the evolution of the interlayer order from ferromagnetic to
orthogonal, namely the adjacent Fe1 moments of the two
neighboring Cairo planes, which were parallel in phase I,

094420-3



ALEXANDER A. TSIRLIN et al. PHYSICAL REVIEW B 96, 094420 (2017)

FIG. 3. Left: temperature dependence of the ordered magnetic moments in Bi4Fe5O13F. Right: temperature dependence of the polar angle
ϕ showing abrupt rotations of the moments upon the first-order spin-reorientation transitions at T1 and T2. The lines are only guides for the eye.

become orthogonal in phase II. This is accompanied by the
drastic reduction in the ordered moment on Fe3 (Fig. 3).

C. Phase III

The narrow region of phase II is followed by a broader
region of phase III, where in-plane order again becomes
orthogonal, whereas the interlayer order returns to collinear,
but the overall magnetic structure is quite different from that
in phase I. First, the interlayer order is now antiferromagnetic,
i.e., adjacent Fe1 moments in the neighboring Cairo planes
are antiparallel to each other. Concurrently, the Fe3 moment
vanishes. At 100 K it refined to 0.29(25)μB , which is
insignificant given the experimental error bar. Therefore, we
fixed the Fe3 moment to zero throughout the temperature range
of phase III.

The differences between the in-plane order of phases I and
III can be captured by introducing the local vector chirality
χ , which we define for the plaquette of four Fe1 spins as
explained in the caption of Fig. 1. The magnetic unit cell
contains four such plaquettes. Two of them are centered by
the 4̄ rotoinversion axis, whereas the other two are centered
by the 42 screw axis. The overall PC42/n symmetry requires
that adjacent plaquettes have opposite vector chiralities, thus
rendering the overall magnetic structure nonchiral. However,
each plaquette changes its local vector chirality upon going
from phase I to phase III. We find χ = +c in phase I and
χ = −c in phase III for the plaquettes centered by the 4̄
rotoinversion axis (“vertical Fe22 dimers”), and the other way
around for the plaquettes centered by the 42 axis (“horizontal
Fe22 dimers”).

D. Mössbauer spectroscopy

Magnetic structure analysis was supported by Mössbauer
spectroscopy measurements. The 57Fe Mössbauer spectra
(Fig. 4) were recorded in the temperature range 55–300 K

in a transmission mode with a 57Co/Rh γ -ray source using
a constant acceleration spectrometer MS1104. At room tem-
perature, the spectrum can be decomposed into three doublets
with the nearly 40:40:20 ratio of the intensities corresponding
to the Fe1, Fe2, and Fe3 positions, respectively (Table III).

Upon cooling below TN , the spectra reveal an additional
splitting indicative of the magnetic ordering. However, the
spectrum at 100 K, in phase III, could not be accounted for by

FIG. 4. Mössbauer spectra of Bi4Fe5O13F and their fits, as
described in the text. For fit parameters, see Table III.
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TABLE III. Parameters of the Mössbauer spectra for Bi4Fe5O13F.
I stands for the fraction of the spectral intensity, δ is the isomer shift,
�EQ is the quadrupolar splitting, � is the linewidth, and H is the
hyperfine field.

I δ �EQ � H

(%) (mm/s) (mm/s) (mm/s) (T)

T = 300 K
Fe1 35 0.37 0.31 0.27
Fe2 38 0.23 0.78 0.26
Fe3 27 0.33 0.36 0.40

T = 100 K
Fe11 23 0.45 0.06 0.32 42.4
Fe12 17 0.46 0.21 0.52 40.2
Fe2 38 0.28 0.11 0.45 39.9
Fe3 22 0.41 0.18 0.60 22

T = 63 K
Fe11 24 0.46 0.04 0.31 46.4
Fe12 16 0.46 0.03 0.67 44.6
Fe21 18 0.29 0.00 0.87 41.0
Fe22 22 0.29 −0.04 0.35 43.2
Fe3 21 0.47 −0.05 0.93 24.1

T = 55 K
Fe11 27 0.50 0.05 0.30 47.6
Fe12 15 0.52 −0.03 0.73 45.8
Fe21 17 0.34 −0.23 0.31 44.6
Fe22 20 0.34 −0.26 0.34 43.4
Fe3 21 0.48 0.13 0.58 28.3

a combination of regular sextets. We find that about 20% of the
spectral intensity corresponds to an unresolved sextet with a
very weak hyperfine splitting. This signal arises from Fe3 sites
that, according to the neutron data, feature a negligible ordered
moment above T2. Below T2, the Fe3 moments increase and a
well-resolved sextet develops.

Below T2, the spectrum is decomposed into five sextets
(Table III). The reduced ordered moment on Fe21 manifests
itself in the largely broadened signal. At 55 K, in phase I, the
sextets of Fe21 and Fe3 become more narrow, suggesting the
formation of large magnetic moments on all Fe sites, which
is again in agreement with the magnetic structures shown in
Fig. 1.

III. MAGNETIC MODEL

A. Isotropic exchange couplings

The isotropic exchange couplings for Bi4Fe5O13F were
previously reported in Ref. [32]. However, using these values
in numerical simulations of the magnetic susceptibility, we
arrived at the too high TN = 250 K compared to the experi-
mental value of 178 K. Therefore, we revised the microscopic
magnetic model using extensive density-functional (DFT)
band-structure calculations [48] performed in the FPLO [49]
and VASP [50,51] codes. Total energies of collinear spin
configurations were mapped onto the spin Hamiltonian, and
exchange couplings were determined [52]. The accuracy of
this approach was improved by choosing different values of
the on-site Coulomb repulsion for the octahedrally coordinated
Fe1 and Fe3 sites and for the tetrahedrally coordinated Fe2

FIG. 5. Fit of the magnetic susceptibility of Bi4Fe5O13F [32]
using revised exchange parameters reported in this work.

sites, following different oxygen coordination and, therefore,
different screening [53].

DFT-based exchange couplings were refined by Monte
Carlo simulation of the magnetic susceptibility. The optimized
set of exchange parameters was obtained, with J33 = 116 K,
J43 = 38 K, J ′

43 = 57 K, and the Fe1–Fe3 interplane interac-
tion J⊥ = 8 K (Fig. 1). Additionally, a weak second-neighbor
interlayer Fe1–Fe1 interaction J⊥2 = 2 K is present. This set
of parameters reproduces the susceptibility down to 120 K
(Fig. 5) and predicts TN � 180 K, in perfect agreement with
the experiment.

B. Magnetic anisotropy

Several anisotropic terms may occur in Bi4Fe5O13F. Their
calculation follows the same procedure [52], with the only
exception being that orthogonal spin configurations are used
[53]. Symmetric exchange anisotropy corresponds to energies
well below 0.1 K per Fe atom and is thus negligible. The
antisymmetric exchange anisotropy Dzyaloshinsky-Moriya
(DM) interactions allowed on the J43, J ′

43, and J⊥ bonds
are stronger, up to about 5 K per Fe atom, but their effect
on the magnetic structure largely cancels out, because in the
orthogonal structures of phases I and III, the adjacent J43

(J ′
43) bonds feature the same directions of the DM vectors, yet

opposite spin rotations.
Single-ion anisotropy terms are believed to be small in

Fe3+ compounds due to the d5 nature of the magnetic ion.
Unexpectedly, we find that these terms are in fact non-
negligible and central to the physics of Bi4Fe5O13F. Single-ion
anisotropy is obtained by fixing spins along a given direction
and rotating the reference spin in the plane perpendicular to
this direction [53]. Angular dependence of the energy, E(ϕ),
directly measures the single-ion anisotropy of the reference
spin.

Figure 6 shows single-ion anisotropies for different Fe sites.
The single-ion anisotropy of Fe3 is much stronger than that of
Fe1 and Fe2. This can be attributed to a large distortion of the
Fe3O6 octahedra [32]. The positions of the energy minima are
compatible with the symmetry of the crystal structure, where
mirror planes require that the E(ϕ) curves are symmetric with
respect to ϕ = 45◦ and 135◦.
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FIG. 6. In-plane single-ion anisotropy energies for the Fe1, Fe2,
and Fe3 sites. The arrows denote preferred spin directions. Only the
Fe3 sites are compatible with the orthogonal structure, because their
preferred directions are at 90◦ to each other. For the Fe1 and Fe2
sites, the angle between preferred directions of the neighboring sites
is largely different from 90◦. Note that we use Fe31 and Fe32 for those
Fe3 sites that are coupled to Fe11 and Fe12, respectively. The angle
ϕ is measured between the magnetic moment and the am axis, and all
curves are periodic, E(ϕ + 180◦) = E(ϕ).

An immediate effect of the single-ion anisotropy terms is
the selection between states A and B that can form in phase I.
Here, the predominant single-ion anisotropy of Fe3 favors
either the am or bm direction of a given Fe3 atom. The Fe1 spins
choose the same directions because of the isotropic coupling
J⊥. Therefore, the Fe11 spins should point along the bm axis,
whereas the Fe12 spins should point along the am axis, as
seen in the state B that is pinpointed by our neutron data. The
single-ion anisotropy also plays a central role for the selection
of both in-plane and interlayer order in Bi4Fe5O13F, as we
explain below.

C. In-plane order

The classical phase diagram of the J43−J ′
43−J33 model that

describes the in-plane isotropic interactions is shown in Fig. 7.
This model takes into account the two inequivalent Fe1–Fe2
couplings, J43 and J ′

43, and the fact that there are two Fe1 spins
on each fourfold site of the lattice. The phase diagram has
been obtained using Lyons and Kaplan’s [54] generalization
of the Luttinger-Tisza method [55]; see Ref. [53] for technical
details. The phase diagram contains three main phases: the
coplanar orthogonal phase, the collinear ferrimagnetic phase,
and a mixed phase in between, which is non-coplanar. In the
latter phase, the projections of the spins along an axis yield
the ferrimagnetic configuration, while the projections in the
plane orthogonal to that axis yield the orthogonal configura-
tion; see also Ref. [24]. The relative projections interpolate be-
tween 0 and 1 as we go across the two boundaries of this phase.

J'
43

J 3
3

Bi4Fe5O13F
Bi2Fe4O9

Mixed

Orthogonal

Ferrimagnetic

degenerate with collinear A

de
ge
ne
ra
te
w
ith
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ne
ar
B

0.0 0.5 1.0 1.5
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J43 J33

0.0

FIG. 7. Classical phase diagram of the isotropic J43−J ′
43−J33

model, with two Fe1 spins on each fourfold site of the lattice; see
the text. The two available compounds are shown by the filled blue
triangle (based on the parameters of [25]) and the filled red dot (based
on the parameters given above).

The special lines J ′
43 = 0 and J43 = 0 correspond to decou-

pled chains. Along these lines, the orthogonal phase becomes
degenerate with infinite other ground states, including the
so-called collinear phases A and B discussed in [53]. The
partially disordered collinear phase of [24], reminiscent of
phase II of Fig. 1(e), is stabilized by quantum fluctuations in
the corner around J43 =J ′

43 =0. The line J43 =J ′
43 maps to the

model of [24] by rescaling J43 →J43/2 and J ′
43 →J ′

43/2.
Based on the above ab initio values, Bi4Fe5O13F sits deep

inside the orthogonal phase (filled red dot in Fig. 7), and far
away from the corner J43 = J ′

43 = 0. Interestingly, the second
Cairo magnet, Bi2Fe4O9, sits almost on the same spot of the
phase diagram (filled blue triangle in Fig. 7) according to the
ab initio parameters of [25].

The interlayer Fe1–Fe3 coupling is much weaker than the
couplings within the plane. Therefore, one expects that the Fe3
spins are more sensitive to thermal fluctuations and decrease
much faster than the spins on Fe1 and Fe2 [53], in agreement
with Fig. 3. On the other hand, the formation of phase II
cannot be anticipated, because the system is far away from
any collinear phase at zero temperature (Fig. 7). There is a
large energy barrier against any thermally driven stabilization
of collinearity at the level of the isotropic model. The scenario
of quantum fluctuations driving the collinear phase is unlikely
as well. The onset of the collinear phase is roughly taking
place when the spin length correction δS from quadratic spin
waves approaches the full value S = 5/2. According to Fig. 4
of Ref. [24], the collinear phase for S = 5/2 (if any) onsets
way below J43/J33 = 0.1, and this number should be further
divided by 2, because here we have two Fe1 sites at each
fourfold site. So the formation of phase II requires the presence
of anisotropy.

The anisotropy of Fe3 is more than five times stronger
than that of Fe1 and Fe2. Therefore, at low temperatures, in
phase I, Fe3 with its preferred directions at ϕ = 0◦ and 90◦
puts the Fe1 moments along am and bm. It does not choose
the flavor of vector chiral order per se, but the anisotropy of
Fe2 selects χ = +c in phase I, as confirmed by a direct energy
minimization.

094420-6



SPIN-REORIENTATION TRANSITIONS IN THE CAIRO . . . PHYSICAL REVIEW B 96, 094420 (2017)

FIG. 8. Left panel: sawtooth-chain model with the couplings J⊥ and J⊥2 and two ordered states, incommensurate and commensurate, which
are degenerate on the classical level. Right panel: the interlayer order in Bi4Fe5O13F.

Above T2, in phase III, the preferred direction of Fe3
plays no role, and the Fe1 and Fe2 moments are left to
form an orthogonal configuration, even though their preferred
directions are not compatible with such a structure. For
example, the preferred directions of Fe11 and Fe12 differ
by 48.2◦ only, whereas Fe21 and Fe22 moments prefer to
be nearly collinear. However, deviations from the orthogonal
structure cost a lot of exchange energy, because the exchange
couplings are at least two orders of magnitude stronger than the
anisotropy. A clear fingerprint of this competition between the
orthogonal state and individual single-ion anisotropies is the
large and unexpected difference in the magnetic moments of
Fe11 and Fe12 in phase III. Indeed, the Fe11 moment is larger,
because it is close to the preferred direction (the departure
from the preferred direction is �ϕ = 5◦ at 100 K). On the
other hand, the moment on Fe12 is far away from its preferred
direction (�ϕ = 47◦) and thus 30% smaller.

A side effect of these energy considerations is that vector
chiral order changes from χ = +c in phase I to χ = −c in
phase III. The continuous transformation between these two
phases necessitates the intermediate quasicollinear phase II
that exists in a narrow temperature range only.

D. Interlayer order

Let us now turn to the interlayer order that
can be described by an effective 1D model of the
–Fe11–Fe3–Fe12–Fe12–Fe3–Fe11– chain. It is essentially a
ferrimagnetic chain, where S ′

1 = 5 stands for the Fe1 dumbbell
and S3 = 5

2 stands for the Fe3 atom. The nearest-neighbor Fe1–
Fe3 coupling J⊥ is augmented by the next-nearest-neighbor
Fe1–Fe1 coupling J⊥2 resulting in a sawtooth-chain geometry
(Fig. 8). Classical energy minimization for such a model gives
rise to a noncollinear state with the angle ψ between the
neighboring spins given by

cos ψ = − J⊥ S3

2J⊥ 2 S ′
1

. (1)

Two ψ rotations may be followed by another two ψ rota-
tions or by two −ψ rotations. Therefore, there is infinite
classical degeneracy in the J⊥ − J⊥2 sawtooth-chain model,
because any sequence of pairwise ψ and −ψ rotations
can occur. This situation is remarkably similar to kagome
francisites [56], where the same physics is observed on

a 2D lattice, and the ground state is chosen (already
on the classical level) by anisotropic terms in the spin
Hamiltonian.

In the case of Bi4Fe5O13F, J⊥/J⊥2 � 4 and S3/S
′
1 � 1

2
produce ferrimagnetic order along the c direction at low
temperatures (phase I, Fig. 8). At higher temperatures, S3

decreases, and the S3/S
′
1 ratio decreases as well. Therefore,

2ψ departs from 360◦ and eventually reaches 180◦ in phase
III, where S3 = 0, and the interlayer order is antiferromagnetic
(Fig. 8). Phase II is in the intermediate regime with 2ψ = 270◦
(Fig. 8), i.e., the interlayer order is orthogonal with the
90◦ configuration between the Fe1 moments in the adjacent
planes.

Ground-state selection requires anisotropic terms in the
spin Hamiltonian. The J⊥ − J⊥2 sawtooth-chain model makes
no difference between the commensurate (“canted”) state,
where two ψ rotations are followed by two −ψ rotations, and
the incommensurate (helical) state, where only ψ rotations
occur (Fig. 8, left). This degeneracy is lifted by anisotropy
terms.

In Bi4Fe5O13F, single-ion anisotropy of Fe1 and Fe3 is
at play. This anisotropy favors the same spin directions on
all Fe3 atoms and, respectively, on all Fe1 atoms from every
second Cairo plane. Therefore, the commensurate order along
the c direction is stabilized. It is worth noting that the DM
coupling on the J⊥ bonds would have an opposite effect and
favor the incommensurate helical order, but such a coupling
is smaller than the single-ion anisotropy terms providing the
energy of 0.4 K per Fe atom only [57]. Therefore, the single-ion
anisotropy is crucial not only for the in-plane order, but also
for the commensurate nature of the order between the Cairo
planes.

IV. DISCUSSION AND CONCLUSIONS

The main picture emerging from the experimental data
presented here is that the interlayer Fe3 spins in Bi4Fe5O13F
play a dual role, on the one hand mediating the 3D ordering
and on the other driving a reorientation of the order both
within and between the planes. While details of this transition
require further dedicated theoretical work, on the experimental
side the effect of the Fe3 spins is crucial for the design of
new Cairo-lattice magnets, because interlayer magnetic sites,
which are often introduced for the sake of stabilizing the crystal
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structure [58], are not innocent and in fact play a decisive role
for the magnetic order.

The sequence of transitions in Bi4Fe5O13F is reminiscent
of the consecutive spin re-orientations in RMn2O5, where
an intermediate collinear phase separates two noncollinear
states. However, this collinear phase [37] is different from our
phase II, because it does not show the characteristic reduction
in the ordered moment on half of the Fe2 sites. Instead, it may
be related to the collinear phases A and B of Fig. 7.

More generally, we show that magnetic order in the
pentagonal geometry is largely influenced by even weak
anisotropy terms. Despite structural similarities, different
systems may eventually show very different types of magnetic
order depending on the transition-metal ion. In the case of
RMn2O5, the d4 Mn3+ ion is known to be more anisotropic
than the d5 Fe3+ ion [59], and no direct analogies between
Fe-based Cairo magnets and multiferroic RMn2O5 manganites
may occur.

Phase II of Bi4Fe5O13F is quite unusual on its own. On the
one hand, it strongly resembles the quantum collinear phase of
the Cairo model [56]. As explained in Sec. II B, deviations from
the collinearity in this phase are due to the imperfect nature

of the Cairo lattice (J43 �= J ′
43). On the other hand, phase II

in Bi4Fe5O13F is not stabilized by quantum fluctuations, and
it originates from competing single-ion anisotropies. Despite
this different origin, phase II involves a significant amount of
fluctuations reflected in the low ordered moment on Fe21. It
would be interesting to explore whether properties of phase II
and especially its magnetic excitations are similar to those
of the quantum collinear phase established in Ref. [56].
Moreover, the variable magnetic structures of Bi4Fe5O13F may
have an effect on its hitherto unknown dielectric behavior.
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