toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cordeiro, R.M.; Yusupov, M.; Razzokov, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 124 Issue 6 Pages 1082-1089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen oxyanions and oxyacids are important agents in atmospheric chemistry and medical biology. Although their chemical behavior in solution is relatively well understood, they may behave very differently at the water/air interface of atmospheric aerosols or at the membrane/water interface of cells. Here, we developed a fully classical model for molecular dynamics simulations of NO3−, NO2−, HNO3, and HNO2 in the framework of the GROMOS 53A6 and 54A7 force field versions. The model successfully accounted for the poorly structured solvation shell and ion pairing tendency of NO3−. Accurate pure-liquid properties and hydration free energies were obtained for the oxyacids. Simulations at the water/air interface showed a local enrichment of HNO3 and depletion of NO3−. The effect was discussed in light of earlier spectroscopic data and ab initio calculations, suggesting that HNO3 behaves as a weaker acid at the surface of water. Our model will hopefully allow for efficient and accurate simulations of nitrogen oxyanions and oxyacids in solution and at microheterogeneous interface environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512222500015 Publication Date (up) 2020-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access  
  Notes We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work. This study was financed in part by the Coordenaçaõ de Aperfeiçoamento de Pessoal de Nı ́vel Superior – Brasil (CAPES) – Finance Code 001. Approved Most recent IF: 3.3; 2020 IF: 3.177  
  Call Number PLASMANT @ plasmant @c:irua:166488 Serial 6340  
Permanent link to this record
 

 
Author Mirzakhani, M.; Peeters, F.M.; Zarenia, M. url  doi
openurl 
  Title Circular quantum dots in twisted bilayer graphene Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 7 Pages 075413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a tight-binding approach, we investigate the effect of twisting angle on the energy levels of circular bilayer graphene (BLG) quantum dots (QDs) in both the absence and presence of a perpendicular magnetic field. The QDs are defined by an infinite-mass potential, so that the specific edge effects are not present. In the absence of magnetic field (or when the magnetic length is larger than the moire length), we show that the low-energy states in twisted BLG QDs are completely affected by the formation of moire patterns, with a strong localization at AA-stacked regions. When magnetic field increases, the energy gap of an untwisted BLG QD closes with the edge states, localized at the boundaries between the AA- and AB-stacked spots in a twisted BLG QD. Our observation of the spatial localization of the electrons in twisted BLG QDs can be experimentally probed by low-bias scanning tunneling microscopy measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512772200004 Publication Date (up) 2020-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 13 Open Access  
  Notes ; We gratefully acknowledge discussions with I. Snyman. M.Z. acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG0205ER46203. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:166493 Serial 6470  
Permanent link to this record
 

 
Author Bjørnåvold, A.; Lizin, S.; Van Dael, M.; Arnold, F.; Van Passel, S. url  doi
openurl 
  Title Eliciting policymakers’ preferences for technologies to decarbonise transport: A discrete choice experiment Type A1 Journal Article
  Year 2020 Publication Environmental Innovation and Societal Transitions Abbreviated Journal Environmental Innovation and Societal Transitions  
  Volume 35 Issue Pages 21-34  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Socio-technical transitions are often hindered by the resilience of existing infrastructures, as policymakers are reluctant to invest in novel products or services. Using the example of carbon capture and utilisation (CCU) based fuels, we set up a discrete choice experiment to assess whether European policymakers have a tendency to avoid investing in novel, and more disruptive technologies, and rather prefer to invest in technologies that resemble the incumbent. Results indicate that policymakers prefer to allocate funding to dominant technologies. The results also revealed an overall positive perception of CCU technologies among policymakers. As the commercialisation of such products and processes continues, acceptance among this group of stakeholders is key.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540750600002 Publication Date (up) 2020-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-4224 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.2 Times cited Open Access  
  Notes The authors would like to express their thanks to the participants that took part in this study. Financial support from the Flemish University Research Fund (BOF) (for Amalie Bjørnåvold) and the Research Foundation – Flanders (FWO) Postdoctoral Grant 12G5418N (for Sebastien Lizin) is gratefully acknowledged. The authors have no competing interests to declare. Approved Most recent IF: 7.2; 2020 IF: NA  
  Call Number ENM @ enm @c:irua:167254 Serial 6351  
Permanent link to this record
 

 
Author Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L. pdf  doi
openurl 
  Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 10 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520285700001 Publication Date (up) 2020-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited 22 Open Access Not_Open_Access  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:167678 Serial 6465  
Permanent link to this record
 

 
Author Ravindra, K.; Dirtu, A.C.; Mor, S.; Wauters, E.; Van Grieken, R. pdf  doi
openurl 
  Title Source apportionment and seasonal variation in particulate PAHs levels at a coastal site in Belgium Type A1 Journal article
  Year 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume Issue Pages  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In the present study, estimation of the atmospheric polycyclic aromatic hydrocarbons (PAHs) was done in particulate samples collected from De Haan, Belgium, during different seasons. The sampling site was situated very close to the north sea and far from the influence of local or industrial activities. The levels of PAHs depicted a distinct seasonal trend, being highest during the spring season. The observations of the study indicated a mean value of 2.6 ng m(-3) for concentration of all the 16 US EPA PAHs, thus being significantly lower when compared to results of previous studies focused on other sites. The dominating PAHs species reported were naphthalene, fluoranthene, benzo[a]anthracene, chrysene, and indeno[1,2,3c,d] pyrene. Assessment of the seasonal variation of the PAH levels was also done with respect to diagnostic ratio-based source identification, analysis of back trajectories, and principle component analysis. Burning of fossil fuels was observed to be the prominent source of atmospheric PAHs in the study area. Further, lifetime cancer risk assessment was performed to assess the detrimental health impacts on humans on being exposed to atmospheric PAHs. Particulate PAHs present in the ambient air of Belgium shows no carcinogenic health impacts. However, considering the industrial expansion in the region, efforts are required to prevent the environmental contamination of PAHs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516395800002 Publication Date (up) 2020-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741  
  Call Number UA @ admin @ c:irua:167778 Serial 6606  
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L. url  doi
openurl 
  Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
  Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev  
  Volume 7 Issue 6 Pages 1046-1058  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000544175300013 Publication Date (up) 2020-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 20.6 Times cited 3 Open Access OpenAccess  
  Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved Most recent IF: 20.6; 2020 IF: 8.843  
  Call Number UA @ admin @ c:irua:170776 Serial 6648  
Permanent link to this record
 

 
Author De Weerdt, L.; Sasao, T.; Compernolle, T.; Van Passel, S.; De Jaeger, S. url  doi
openurl 
  Title The effect of waste incineration taxation on industrial plastic waste generation: A panel analysis Type A1 Journal Article
  Year 2020 Publication Resources Conservation And Recycling Abbreviated Journal Resour Conserv Recy  
  Volume 157 Issue Pages 104717  
  Keywords A1 Journal Article; Engineering Management (ENM) ;  
  Abstract Waste treatment taxation is a popular policy instrument in many European countries and regions. Its impact on household waste has extensively been researched. However, only little research exists which looks into the impact of waste treatment taxation on industrial waste generation. Nevertheless, industrial waste constitutes more than ninety percent of waste generated in the European Union. This study assesses the impact of an incineration tax on the generation of industrial plastic waste in Flanders, Belgium. We conduct different types of econometrical panel analyzes and provide statistical evidence that firms show lagged behavior, which means that the previous year’s waste generation partly determines the current year’s. The dynamic panel estimations show robust results, indicating that a growth of incineration taxes exert significant negative effects on the growth of industrial plastic waste generation. This result offers no argument to iteratively raise incineration taxes. We conclude that incineration taxation is meaningful if tax rates are set according to the prevailing market conditions, i.e. taking into account the marginal costs of alternatives for incineration. In the short run, the effectiveness of taxation will quickly diminish due to the rapidly rising marginal costs of waste reduction. In the long run, extra recycling capacity is needed to recycle the minimized waste fraction. The role of taxation in the long run is to maintain an equilibrium in which recycling is preferred by the market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000540606400023 Publication Date (up) 2020-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access  
  Notes Flemish Circular Economy Policy Research Centre; Research Foundation Flanders, 12M7417N ; Approved Most recent IF: 13.2; 2020 IF: 3.313  
  Call Number ENM @ enm @c:irua:167590 Serial 6352  
Permanent link to this record
 

 
Author Agrawal, H.; Patra, B.K.; Altantzis, T.; De Backer, A.; Garnett, E.C. url  doi
openurl 
  Title Quantifying Strain and Dislocation Density at Nanocube Interfaces after Assembly and Epitaxy Type A1 Journal article
  Year 2020 Publication Acs Applied Materials & Interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 12 Issue 7 Pages 8788-8794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle self-assembly and epitaxy are utilized extensively to make 1D and 2D structures with complex shapes. High-resolution transmission electron microscopy (HRTEM) has shown that single-crystalline interfaces can form, but little is known about the strain and dislocations at these interfaces. Such information is critically important for applications: drastically reducing

dislocation density was the key breakthrough enabling widespread implementation of light-emitting diodes, while strain engineering has been fundamental to modern high-performance transistors, solar cells, and thermoelectrics. In this work, the interfacial defect and strain formation after selfassembly and room temperature epitaxy of 7 nm Pd nanocubes capped with polyvinylpyrrolidone (PVP) is examined. It is observed that, during ligand removal, the cubes move over large distances on the substrate, leading to both spontaneous self-assembly and epitaxy to form single crystals. Subsequently, atomically resolved images are used to quantify the strain and dislocation density at the epitaxial interfaces between cubes with different lateral and angular misorientations. It is shown that dislocation- and strain-free interfaces form when the nanocubes align parallel to each other. Angular misalignment between adjacent cubes does not necessarily lead to grain boundaries but does cause dislocations, with higher densities associated with larger rotations.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515214300101 Publication Date (up) 2020-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; H2020 Research Infrastructures, 731019 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 14846 ; The work at AMOLF is part of the research program of the “Nederlandse Organisatie voor Wetenschappelijk Onderzoek” (NWO). This work was supported by the NWO VIDI grant (project no. 14846). The authors would like to thank Reinout Jaarsma and Dr. Sven Askes for helping with the XPS measurements. A.D.B. acknowledges a postdoctoral grant from the research foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement no. 731019 EUSMI. Approved Most recent IF: 9.5; 2020 IF: 7.504  
  Call Number EMAT @ emat @c:irua:167770 Serial 6398  
Permanent link to this record
 

 
Author Idrissi, H.; Samaee, V.; Lumbeeck, G.; Werf, T.; Pardoen, T.; Schryvers, D.; Cordier, P. pdf  url
doi  openurl
  Title In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope Type A1 Journal article
  Year 2020 Publication Journal Of Geophysical Research-Solid Earth Abbreviated Journal J Geophys Res-Sol Ea  
  Volume 125 Issue 3 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the mechanical properties of serpentinites is essential toward the understanding of the mechanics of faulting and subduction. Here we present the first in situ tensile tests on antigorite in a transmission electron microscope. A push‐to‐pull deformation device is used to perform quantitative tensile tests, during which force and displacement are measured, while the evolving microstructure is imaged with the microscope. The experiments have been performed at room temperature on 2 × 1 × 0.2 μm3 beams prepared by focused ion beam. The specimens are not single crystals despite their small sizes. Orientation mapping indicated that several grains were well oriented for plastic slip. However, no dislocation activity has been observed even though the engineering tensile stress went up to 700 MPa. We show also that antigorite does not exhibit a purely elastic‐brittle behavior since, despite the presence of defects, the specimens accumulate permanent deformation and did not fail within the elastic regime. Instead, we observe that strain localizes at grain boundaries. All observations concur to show that under these experimental conditions, grain boundary sliding is the dominant deformation mechanism. This study sheds a new light on the mechanical properties of antigorite and calls for further studies on the structure and properties of grain boundaries in antigorite and more generally in phyllosilicates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530895800023 Publication Date (up) 2020-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9313 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes We thank S. Guillot for having kindly provided us with the two antigorite samples investigated in this study. We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under Grant Agreement 787198—TimeMan. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR‐FNRS). We acknowledge fruitful discussions with A. Baronnet. We thank J. Gasc and an anonymous reviewer for their critical comments. Data (movies of the three in situ deformation experiments) can be downloaded (from https://doi.org/10.5281/zenodo.3583135). Approved Most recent IF: 3.9; 2020 IF: 3.35  
  Call Number EMAT @ emat @c:irua:167594 Serial 6355  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Akgenc, B.; Mortazavi, B.; Ghergherehchi, M.; Nguyen, C.V. url  doi
openurl 
  Title Embedding of atoms into the nanopore sites of the C₆N₆ and C₆N₈ porous carbon nitride monolayers with tunable electronic properties Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 22 Issue 11 Pages 6418-6433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 mu(B), and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 mu(B), respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523409400037 Publication Date (up) 2020-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 17 Open Access  
  Notes ; This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 4.123  
  Call Number UA @ admin @ c:irua:168617 Serial 6504  
Permanent link to this record
 

 
Author Saveleva, V.A.; Wang, L.; Kasian, O.; Batuk, M.; Hadermann, J.; Gallet, J.-j.; Bournel, F.; Alonso-Vante, N.; Ozouf, G.; Beauger, C.; Mayrhofer, K.J.J.; Cherevko, S.; Gago, A.S.; Friedrich, K.A.; Zafeiratos, S.; Savinova, E.R. url  doi
openurl 
  Title Insight into the Mechanisms of High Activity and Stability of Iridium Supported on Antimony-Doped Tin Oxide Aerogel for Anodes of Proton Exchange Membrane Water Electrolyzers Type A1 Journal article
  Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 10 Issue 4 Pages 2508-2516  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The use of high amounts of iridium in industrial proton exchange membrane water electrolysers (PEMWE) could hinder their widespread use for the decarbonisation of society with hydrogen. Non-thermally oxidised Ir nanoparticles supported on antimony-doped tin oxide (SnO2:Sb, ATO) aerogel allow decreasing the use of the precious metal by more than 70 %, while enhancing the electro-catalytic activity and stability. To date the origin of these benefits remains unknown. Here we present clear evidence on the mechanisms that lead to the enhancement of the electrochemical properties of the catalyst. Operando near ambient pressure X-ray photoelectron spectroscopy on membrane electrode assemblies reveals a low degree of Ir oxidation, attributed to the oxygen spill-over from Ir to SnO2:Sb. Furthermore, the formation of highly unstable Ir(III) species is mitigated, while the decrease of Ir dissolution in Ir/SnO2:Sb is confirmed by inductively coupled plasma mass spectrometry (ICP-MS). The mechanisms that lead to the high activity and stability of Ir catalyst supported on SnO2:Sb aerogel for PEMWE are thus unveiled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516887400011 Publication Date (up) 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access OpenAccess  
  Notes The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) for Fuel Cell and Hydrogen Joint Technology (FCH JU) Initiative under Grant No. 621237 (INSIDE). In addition, A.S.G. and C.B. thank the European Union’s Horizon 2020 research and innovation programme for funding the project PRETZEL under grant agreement No 779478 and it is supported by FCH JU. Solvay is acknowledged for providing Aquivion membrane and ionomer. Approved Most recent IF: 12.9; 2020 IF: 10.614  
  Call Number EMAT @ emat @c:irua:167147 Serial 6341  
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W. pdf  doi
openurl 
  Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 11 Pages 6472-6478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526396000067 Publication Date (up) 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:168625 Serial 6528  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Qin, Y.; Ozen, S.; Sayyad, M.; Peeters, F.M.; Tongay, S.; Sahin, H. pdf  doi
openurl 
  Title Quantum properties and applications of 2D Janus crystals and their superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Reviews Abbreviated Journal Appl Phys Rev  
  Volume 7 Issue 1 Pages 011311-11316  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) Janus materials are a new class of materials with unique physical, chemical, and quantum properties. The name “Janus” originates from the ancient Roman god which has two faces, one looking to the future while the other facing the past. Janus has been used to describe special types of materials which have two faces at the nanoscale. This unique atomic arrangement has been shown to present rather exotic properties with applications in biology, chemistry, energy conversion, and quantum sciences. This review article aims to offer a comprehensive review of the emergent quantum properties of Janus materials. The review starts by introducing 0D Janus nanoparticles and 1D Janus nanotubes, and highlights their difference from classical ones. The design principles, synthesis, and the properties of graphene-based and chalcogenide-based Janus layers are then discussed. A particular emphasis is given to colossal built-in potential in 2D Janus layers and resulting quantum phenomena such as Rashba splitting, skyrmionics, excitonics, and 2D magnetic ordering. More recent theoretical predictions are discussed in 2D Janus superlattices when Janus layers are stacked onto each other. Finally, we discuss the tunable quantum properties and newly predicted 2D Janus layers waiting to be experimentally realized. The review serves as a complete summary of the 2D Janus library and predicted quantum properties in 2D Janus layers and their superlattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519611500001 Publication Date (up) 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-9401 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 107 Open Access  
  Notes ; S.T. acknowledges support from NSF Contract Nos. DMR 1552220, DMR 1904716, and NSF CMMI 1933214. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. H.S. acknowledges support from the Turkish Academy of Sciences under the GEBIP program. M.Y. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. Part of this work was supported by the FLAG-ERA project TRANS2D-TMD. ; Approved Most recent IF: 15; 2020 IF: 13.667  
  Call Number UA @ admin @ c:irua:167712 Serial 6591  
Permanent link to this record
 

 
Author Mortazavi, B.; Bafekry, A.; Shahrokhi, M.; Rabczuk, T.; Zhuang, X. pdf  doi
openurl 
  Title ZnN and ZnP as novel graphene-like materials with high Li-ion storage capacities Type A1 Journal article
  Year 2020 Publication Materials today energy Abbreviated Journal  
  Volume 16 Issue Pages Unsp 100392-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this work, we employed first-principles density functional theory (DFT) calculations to investigate the dynamical and thermal stability of graphene-like ZnX (X = N, P, As) nanosheets. We moreover analyzed the electronic, mechanical and optical properties of these novel two-dimensional (2D) systems. Acquired phonon dispersion relations reveal the absence of imaginary frequencies and thus confirming the dynamical stability of predicted monolayers. According to ab-initio molecular dynamics results however only ZnN and ZnP exhibit the required thermally stability. The elastic modulus of ZnN, ZnP and ZnAs are estimated to be 31, 21 and 17 N/m, respectively, and the corresponding tensile strengths values are 6.0, 4.9 and 4.0 N/m, respectively. Electronic band structure analysis confirms the metallic electronic character for the predicted monolayers. Results for the optical characteristics also indicate a reflectivity of 100% at extremely low energy levels, which is desirable for photonic and optoelectronic applications. According to our results, graphene-like ZnN and ZnP nanosheets can yield high capacities of 675 and 556 mAh/g for Li-ion storage, respectively. Acquired results confirm the stability and acceptable strength of ZnN and ZnP nanosheets and highlight their attractive application prospects in optical and energy storage systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539083500049 Publication Date (up) 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-6069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.3 Times cited 13 Open Access  
  Notes ; B. M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 9.3; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:169752 Serial 6655  
Permanent link to this record
 

 
Author Gielis, J.; Caratelli, D.; Shi, P.; Ricci, P.E. url  doi
openurl 
  Title A note on spirals and curvature Type A1 Journal article
  Year 2020 Publication Growth and form Abbreviated Journal  
  Volume 1 Issue 1 Pages 1-8  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Starting from logarithmic, sinusoidal and power spirals, it is shown how these spirals are connected directly with Chebyshev polynomials, Lamé curves, with allometry and Antonelli-metrics in Finsler geometry. Curvature is a crucial concept in geometry both for closed curves and equiangular spirals, and allowed Dillen to give a general definition of spirals. Many natural shapes can be described as a combination of one of two basic shapes in nature—circle and spiral—with Gielis transformations. Using this idea, shape description itself is used to develop a novel approach to anisotropic curvature in nature. Various examples are discussed, including fusion in flowers and its connection to the recently described pseudo-Chebyshev functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2020-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167061 Serial 6569  
Permanent link to this record
 

 
Author Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. url  doi
openurl 
  Title Division of labor and growth during electrical cooperation in multicellular cable bacteria Type A1 Journal article
  Year 2020 Publication Proceedings Of The National Academy Of Sciences Of The United States Of America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 117 Issue 10 Pages 5478-5485  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519530400054 Publication Date (up) 2020-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 6 Open Access  
  Notes ; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; Approved Most recent IF: 11.1; 2020 IF: 9.661  
  Call Number UA @ admin @ c:irua:166452 Serial 6487  
Permanent link to this record
 

 
Author Delvaux, A.; Lumbeeck, G.; Idrissi, H.; Proost, J. pdf  doi
openurl 
  Title Effect of microstructure and internal stress on hydrogen absorption into Ni thin film electrodes during alkaline water electrolysis Type A1 Journal article
  Year 2020 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 340 Issue Pages 135970-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Efforts to improve the cell efficiency of hydrogen production by water electrolysis continue to address the electrochemical kinetics of the oxygen and hydrogen evolution reactions in detail. The objective of this work is to study a parasitic reaction occurring during the hydrogen evolution reaction (HER), namely the absorption of hydrogen atoms into the bulk electrode. Effects of the electrode microstructure and internal stress on this reaction have been addressed as well in this paper. Ni thin film samples were deposited on a Si substrate by sputter deposition with different deposition pressures, resulting in different microstructures and varying levels of internal stress. These microstructures were first analyzed in detail by Transmission Electron Microscopy (TEM). Cathodic chrono-amperometric measurements and cyclic voltammetries have then been performed in a homemade electrochemical cell. These tests were coupled to a multi-beam optical sensor (MOS) in order to obtain in-situ curvature measurements during hydrogen absorption. Indeed, since hydrogen absorption in the thin film geometry results in a constrained volume expansion, internal stress generation during HER can be monitored by means of curvature measurements. Our results show that different levels of internal stress, grain size and twin boundary density can be obtained by varying the deposition parameters. From an electrochemical point of view, this paper highlights the fact that the electrochemical surface mechanisms during HER are the same for all the electrodes, regardless of their microstructure. However it is shown that the absolute amount of hydrogen being absorbed into the Ni thin films increases when the grain size is reduced, due to a higher grain boundaries density which are favourite absorption sites for hydrogen. At the same time, it was concluded that H-2 evolution is favoured at electrodes having a more compressive (i.e. a less tensile) internal stress. Finally, the subtle effect of microstructure on the hydrogen absorption rate will be discussed as well. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000521531800011 Publication Date (up) 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors gratefully acknowledge financial support of the Public Service of Wallonia e Department of Energy and Sustainable Building, through the project WallonHY. The ACOM-TEM work was supported by the Hercules Foundation [Grant No. AUHA13009], the Flemish Research Fund (FWO) [Grant No. G.0365.15 N], and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. We also like to cordially thank Ronny Santoro for carrying out the ICP-OES measurements. ; Approved Most recent IF: 6.6; 2020 IF: 4.798  
  Call Number UA @ admin @ c:irua:168536 Serial 6497  
Permanent link to this record
 

 
Author Lu, Y.; Liu, Y.-X.; He, L.; Wang, L.-Y.; Liu, X.-L.; Liu, J.-W.; Li, Y.-Z.; Tian, G.; Zhao, H.; Yang, X.-H.; Liu, J.; Janiak, C.; Lenaerts, S.; Yang, X.-Y.; Su, B.-L. doi  openurl
  Title Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO₂ for enhancement of carrier transport Type A1 Journal article
  Year 2020 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 12 Issue 15 Pages 8364-8370  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The interfacial co-existence of oxygen and metal vacancies in metal oxide semiconductors and their highly efficient carrier transport have rarely been reported. This work reports on the co-existence of oxygen and titanium vacancies at the interface between TiO2 and rGO via a simple two-step calcination treatment. Experimental measurements show that the oxygen and titanium vacancies are formed under 550 degrees C/Ar and 350 degrees C/air calcination conditions, respectively. These oxygen and titanium vacancies significantly enhance the transport of interfacial carriers, and thus greatly improve the photocurrent performances, the apparent quantum yield, and photocatalysis such as photocatalytic H-2 production from water-splitting, photocatalytic CO2 reduction and photo-electrochemical anticorrosion of metals. A new “interfacial co-existence of oxygen and titanium vacancies” phenomenon, and its characteristics and mechanism are proposed at the atomic-/nanoscale to clarify the generation of oxygen and titanium vacancies as well as the interfacial carrier transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000529201500029 Publication Date (up) 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 4 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (51861135313, U1663225, U1662134, and 51472190), the International Science & Technology Cooperation Program of China (2015DFE52870), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), the Fundamental Research Funds for the Central Universities (19lgpy113 and 19lgzd16), the Jilin Province Science and Technology Development Plan (20180101208JC) and the Hubei Provincial Natural Science Foundation of China (2016CFA033). ; Approved Most recent IF: 6.7; 2020 IF: 7.367  
  Call Number UA @ admin @ c:irua:169578 Serial 6550  
Permanent link to this record
 

 
Author Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A. url  doi
openurl 
  Title KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures Type A1 Journal article
  Year 2020 Publication Royal Society Open Science Abbreviated Journal Roy Soc Open Sci  
  Volume 7 Issue 2 Pages 191809-191832  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518020200001 Publication Date (up) 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 19 Open Access OpenAccess  
  Notes ; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; Approved Most recent IF: 3.5; 2020 IF: 2.243  
  Call Number UA @ admin @ c:irua:167751 Serial 6556  
Permanent link to this record
 

 
Author Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515659700007 Publication Date (up) 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author Zewdie, M.C.; Van Passel, S.; Moretti, M.; Annys, S.; Tenessa, D.B.; Ayele, Z.A.; Tsegaye, E.A.; Cools, J.; Minale, A.S.; Nyssen, J. url  doi
openurl 
  Title Pathways how irrigation water affects crop revenue of smallholder farmers in northwest Ethiopia: A mixed approach Type A1 Journal article
  Year 2020 Publication Agricultural Water Management Abbreviated Journal Agr Water Manage  
  Volume 233 Issue Pages 106101  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The relationship between irrigation water availability and crop revenue is multifaceted. However, most of the previous studies focused only on the direct effect of irrigation water on crop revenue or considered that the indirect effect passes only through the farmers’ improved farm inputs usage. Nevertheless, unlike previous studies, this study argues that a one-sided argument that irrigation water directly causes high crop revenue or indirectly affects crop revenue only via the farmers’ improved farm inputs usage is incomplete, as irrigation water not only directly contributes to crop revenue but also indirectly conduces to crop revenue via both the type of crops produced and the farmers’ improved farm inputs usage. Considering the previous studies’ limitations, this study investigates pathways how small-scale irrigation water affects crop revenue and identifies challenges of small-scale irrigation farming in Fogera district, Ethiopia. Results endorsed that irrigation water has both direct and indirect effects on crop revenue. The indirect effect is 67 percent of the total effect and it is mediated by both the type of crops produced and farmers’ improved farm inputs usage. The result also indicated that irrigation user farmers have a higher income, more livestock assets and resources and better food, housing, and cloths than the non-users. Moreover, challenges related to agricultural output and input market were identified as the most severe problem followed by crop disease. The findings of our study suggest that to utilize the benefits of irrigation water properly, it is crucial to encourage farmers to use more improved farm inputs and to shift from staple to cash crop production. Moreover, farmers are frequently exposed to cheating by illegal brokers in the output market, therefore it is also important to increase farmers’ accessibility to output and input markets, the quality of improved farm inputs, and the bargaining power of farmers with market information.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000525291200025 Publication Date (up) 2020-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access  
  Notes Bahir Dar University – Institutional University Cooperation; Approved Most recent IF: 6.7; 2020 IF: 2.848  
  Call Number ENM @ enm @c:irua:167592 Serial 6353  
Permanent link to this record
 

 
Author Sui, Y.; Jiang, Y.; Moretti, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Harvesting time and biomass composition affect the economics of microalgae production Type A1 Journal article
  Year 2020 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 259 Issue Pages 120782-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract Cost simulations provide a strong tool to render the production of microalgae economically viable. This study evaluated the unexplored effect of harvesting time and the corresponding microalgal biomass composition on the overall production cost, under both continuous light and light/dark regime using techno-economic analysis (TEA). At the same time, the TEA gives evidence that a novel product “proteinaceous salt” from Dunaliella microalgae production is a promising high-value product for commercialization with profitability. The optimum production scenario is to employ natural light/dark regime and harvest microalgal biomass around late exponential phase, obtaining the minimum production cost of 11 €/kg and a profitable minimum selling price (MSP) of 14.4 €/kg for the “proteinaceous salt”. For further optimization of the production, increasing microalgal biomass concentration is the most effective way to reduce the total production cost and increase the profits of microalgae products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000530695500009 Publication Date (up) 2020-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited 5 Open Access  
  Notes ; This work was supported by the China Scholarship Council (File No. 201507650015) and the MIP i-Cleantech Flanders (Milieu-innovatieplatform; Environment innovation platform) project Microbial Nutrients on Demand (MicroNOD). ; Approved Most recent IF: 11.1; 2020 IF: 5.715  
  Call Number UA @ admin @ c:irua:166802 Serial 6531  
Permanent link to this record
 

 
Author Wei, P.; Ke, B.; Xing, L.; Li, C.; Ma, S.; Nie, X.; Zhu, W.; Sang, X.; Zhang, Q.; Van Tendeloo, G.; Zhao, W. pdf  doi
openurl 
  Title Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites Type A1 Journal article
  Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact  
  Volume 163 Issue Pages 110240-110248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The demand of a full solid-state cooling technology based on magnetocaloric and thermoelectric effects has led to a growing interest in screening candidate materials with high-efficiency cooling performance, which also stimulates the exploration of magnetocaloric/thermoelectric hybrid cooling materials. A series of Gd/Bi0.5Sb1.5Te3 composites was fabricated in order to develop the hybrid cooling technology. The chemical composition, phase structure and diffusion kinetics across the reaction layers in Gd/Bi0.5Sb1.5Te3 composites were analyzed at different reaction temperatures. Micro-area elemental analysis indicates that the formation of interfacial phases is dominated by the diffusion of Gd and Te while the diffusion of Bi and Sb is impeded. The interfacial phases, including GdTe2, GdTe3, and intermediate phases GdTex, are identified by atomic-resolution electron microscopy. The concentration modulation of Gd and Te is adapted by altering the stacking of the Te square-net sheets and the corrugated GdTe sheets. Boltzmann-Marano analysis was applied to reveal the diffusion kinetics of Gd and Te in the interfacial layers. The diffusion coefficients of Te in GdTe2 and GdTe3 are much higher than that of Gd while in GdTe the situation is reversed. This study provides a clear picture to understand the interfacial phase structures down to an atomic scale as well as the interfacial diffusion kinetics in Gd/Bi0.5Sb1.5Te3 hybrid cooling materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000551341700045 Publication Date (up) 2020-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Nos. 91963122, 11834012, 51620105014, 51521001, 51902237), National Key Research and Development Program of China (No. 2018YFB0703603), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 183101006). XRD and EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. ; Approved Most recent IF: 4.7; 2020 IF: 2.714  
  Call Number UA @ admin @ c:irua:171317 Serial 6456  
Permanent link to this record
 

 
Author Dattoli, G.; Di Palma, E.; Gielis, J.; Licciardi, S. url  doi
openurl 
  Title Parabolic trigonometry Type A1 Journal article
  Year 2020 Publication International journal of applied and computational mathematics Abbreviated Journal  
  Volume 6 Issue 2 Pages 37  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date (up) 2020-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2349-5103 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167049 Serial 6578  
Permanent link to this record
 

 
Author Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E. doi  openurl
  Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
  Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 270 Issue Pages 118843  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526110500007 Publication Date (up) 2020-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.1 Times cited Open Access  
  Notes Approved Most recent IF: 22.1; 2020 IF: 9.446  
  Call Number UA @ admin @ c:irua:183959 Serial 6856  
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A. url  doi
openurl 
  Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 124 Issue 9 Pages 095702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518464200009 Publication Date (up) 2020-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462  
  Call Number UA @ lucian @c:irua:167699 Serial 6393  
Permanent link to this record
 

 
Author Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N., V url  doi
openurl 
  Title Transforming solid-state precipitates via excess vacancies Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 1248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Many phase transformations associated with solid-state precipitation look structurally simple, yet, inexplicably, take place with great difficulty. A classic case of difficult phase transformations is the nucleation of strengthening precipitates in high-strength lightweight aluminium alloys. Here, using a combination of atomic-scale imaging, simulations and classical nucleation theory calculations, we investigate the nucleation of the strengthening phase theta' onto a template structure in the aluminium-copper alloy system. We show that this transformation can be promoted in samples exhibiting at least one nanoscale dimension, with extremely high nucleation rates for the strengthening phase as well as for an unexpected phase. This template-directed solid-state nucleation pathway is enabled by the large influx of surface vacancies that results from heating a nanoscale solid. Template-directed nucleation is replicated in a bulk alloy as well as under electron irradiation, implying that this difficult transformation can be facilitated under the general condition of sustained excess vacancy concentrations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000549162600025 Publication Date (up) 2020-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 5 Open Access OpenAccess  
  Notes ; The authors are indebted to Matthew Weyland for his expert advice on aberrationcorrected scanning transmission electron microscopy. L.B. would like to acknowledge initial discussions with B.C. Muddle and J.F. Nie many years ago regarding the possible thermodynamic role of vacancies in solid-state precipitation. The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. The authors thank Flame Burgmann, Dougal McCulloch and Edwin Mayes for access to and assistance at the Microscopy and Microanalysis Facility at RMIT University. L.B. and N.M. acknowledge the financial support of the Australian Research Council (DP150100558). Authors also gratefully acknowledge the computational support from MonARCH, MASSIVE and the National Computing Infrastructure and Pawsey Supercomputing Centre. ZZ and YZ are thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship. Z.Z. is grateful for a Monash Centre for Electron Microscopy Postgraduate Scholarship. The authors are grateful to Anita Hill for advice. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:170797 Serial 6635  
Permanent link to this record
 

 
Author Rowenczyk, L.; Dazzi, A.; Deniset-Besseau, A.; Beltran, V.; Goudounèche, D.; Wong-Wah-Chung, P.; Boyron, O.; George, M.; Fabre, P.; Roux, C.; Mingotaud, A.F.; ter Halle, A. pdf  doi
openurl 
  Title Microstructure characterization of oceanic polyethylene debris Type A1 Journal article
  Year 2020 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 54 Issue 7 Pages 4102-4109  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526418000041 Publication Date (up) 2020-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited 3 Open Access  
  Notes ; Foundation and The French National Reaserch Program for Environmental and Occupational Health of Anses (EST/2017/1/219). We thank the 7th Continent Expedition Association, as well as the staff and crew, for the sea sampling campaign. ; Approved Most recent IF: 11.4; 2020 IF: 6.198  
  Call Number UA @ admin @ c:irua:172890 Serial 6560  
Permanent link to this record
 

 
Author Chen, C.; Sang, X.; Cui, W.; Xing, L.; Nie, X.; Zhu, W.; Wei, P.; Hu, Z.-Y.; Zhang, Q.; Van Tendeloo, G.; Zhao, W. pdf  doi
openurl 
  Title Atomic-resolution fine structure and chemical reaction mechanism of Gd/YbAl₃ thermoelectric-magnetocaloric heterointerface Type A1 Journal article
  Year 2020 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd  
  Volume 831 Issue Pages 154722-154728  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thermoelectric materials and magnetocaloric materials are promising candidates for solid-state refrigeration applications. The combination of thermoelectric and magnetocaloric effects could potentially lead to more efficient refrigeration techniques. We designed and successfully synthesized Gd/YbAl3 composites using a YbAl3 matrix with good low-temperature thermoelectric performance and Gd microspheres with a high magnetocaloric performance, using a sintering condition of 750 degrees C and 50 MPa. Using aberration-corrected scanning transmission electron microscopy (STEM), it was discovered that the heterointerface between Gd and YbAl 3 is composed of five sequential interfacial layers: GdAl3, GdAl2, GdAl, Gd3Al2, and Gd3Al. The diffusion of Al atoms plays a crucial role in the formation of these interfacial layers, while Yb or Gd do not participate in the interlayer diffusion. This work provides the essential structural information for further optimizing and designing high-performance composites for thermoelectric-magnetocaloric hybrid refrigeration applications. (C) 2020 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000531727900005 Publication Date (up) 2020-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by National Natural Science Foundation of China (Nos. 11834012, 51620105014, 91963207, 91963122, 51902237) and National Key R&D Program of China (No. 2018YFB0703603, 2019YFA0704903, SQ2018YFE010905). EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX). ; Approved Most recent IF: 6.2; 2020 IF: 3.133  
  Call Number UA @ admin @ c:irua:169447 Serial 6455  
Permanent link to this record
 

 
Author Karaaslan, Y.; Yapicioglu, H.; Sevik, C. doi  openurl
  Title Assessment of Thermal Transport Properties of Group-III Nitrides: A Classical Molecular Dynamics Study with Transferable Tersoff-Type Interatomic Potentials Type A1 Journal article
  Year 2020 Publication Physical Review Applied Abbreviated Journal Phys Rev Appl  
  Volume 13 Issue 3 Pages 034027  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, by means of classical molecular dynamics simulations, we investigate the thermal-transport properties of hexagonal single-layer, zinc-blend, and wurtzite phases of BN, AlN, and GaN crystals, which are very promising for the application and design of high-quality electronic devices. With this in mind, we generate fully transferable Tersoff-type empirical interatomic potential parameter sets by utilizing an optimization procedure based on particle-swarm optimization. The predicted thermal properties as well as the structural, mechanical, and vibrational properties of all materials are in very good agreement with existing experimental and first-principles data. The impact of isotopes on thermal transport is also investigated and between approximately 10 and 50% reduction in phonon thermal transport with random isotope distribution is observed in BN and GaN crystals. Our investigation distinctly shows that the generated parameter sets are fully transferable and very useful in exploring the thermal properties of systems containing these nitrides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518820200003 Publication Date (up) 2020-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2020 IF: 4.808  
  Call Number UA @ admin @ c:irua:193766 Serial 7508  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: