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 1.  INTRODUCTION 

Spirals are among the most intriguing curves in mathematics, with 
a clear relevance for the natural sciences. There are many differ-
ent spirals, and one century ago Gino Loria, whose Storia delle 
matematiche is a treasure trove for knowledge and understanding 
of planar curves [1], wrote:

The word ‘spiral’, which we used on the preceding pages, goes back to 
the most distant of ancient times, meaning a path in the astronom-
ical system of Plato, but the corresponding general concept has not 
yet attained that degree of precision, which a mathematical concept 
requires; For the time being, we want to refer to spirals as all curves 
whose simplest and most appropriate analytical representation is 
obtained in polar coordinate application.

Looking beyond the analytical representation of spirals, many links 
to other classical curves are possible. In Section 2, we focus on three 
different groups of spirals defined using equations. The equations 
in polar coordinates have their specific counterparts in Cartesian 
coordinates, and several examples will be discussed in Section 3. 
A differential geometrical approach leads to a general definition of 
anisotropic curvature in Section 4 and applications.

2.  THREE CLASSES OF SPIRALS

2.1.  Power Law Spirals

This family of spirals is defined as [2] (Table 1):
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2.2.  The Logarithmic or Bernoulli Spiral

This spiral is defined as [3]:
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For a = 1, b = en, we have r = enq
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q
q

r r q

= +

= ¢ +

R Ji
ds

d
( ) ( ) .( )/2 2 1 2

 So we have

		  r q qq
= e n i n

c

in = +

=

cos sin
1
2

�  (4)

r = r1 + ir2 with r r q1 = =R cosn  and r r q2 = =I sinn

For n = 1; q = p  we have Euler’s identity, namely
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Table 1 | Power law spirals and some special cases

 m, n q p= a
m
n General spiral

 m = 1, n = 2 r q= a
1
2 Fermat spiral

 m = 1, n = 1 r = aq 1 Archimedes spiral
 m = −1, n = 1  r = aq −1 Hyperbolic spiral

 m = −1, n = 2
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•• For any odd integer n = 2k + 1, einp = −1 or eipn + 1 = 0

•• For all even integers n = 2k, einp = +1 or eipn − 1 = 0
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2.3.  Sinusoidal Spirals

Sinusoidal spirals are defined as

			   r qn na n= cos( ) �  (7)

with n a rational number and a ≠ 0. In Table 2, well-known special 
cases are listed. For r = cos nq or r = sin nq  the Rhodonea or rose 
curves result [3,4].

      U x U x x U x xU x U xn n n0 1 1 11 2 2( ) ; ; .( ) ( ) ( ) ( )= = = −+ − �  (11)

It follows that both (co-)sinusoidal spirals r n = a m cos nq and 
the logarithmic or Bernoulli spirals r = e inq = cos nq + i sin nq 
with r r q1 = =R cosn  and r r q2 = =I sinn  can be written in 
terms of Chebyshev polynomials or Rhodonea curves defined 
by cos nq or sin nq with n ∈ . Chebyshev polynomials arise 
as a solution to a homogeneous linear second order difference 
equation with constant coefficients u0; u1; un+1 = aun + bun–1, for n 
≤ 1. If a and b are both polynomials in x, a sequence of polyno-
mials is generated. In particular if a = 2x and b = −1, we obtain 
Chebyshev polynomials.

They are of the first kind Tn(x) for u0 = 1; u1 = x, and of the second 
kind Un(x) for u0 = 1; u1 = 2x. Fibonacci numbers Fn arise for a = 
b = 1; u0 = 0; u1 = 1. For a = b = 1; u0 = 2; u1 = 1, we obtain Lucas  
numbers Ln. Therefore, if in Chebyshev polynomials i = −1 is 

used with x
i=
2

 the results are Lucas numbers Ln for Chebyshev 

polynomials of the first kind Tn, and Fibonacci numbers Fn for those 

of the second kind Un [3–5]. The relationship between logarithmic 
spiral and Fibonacci numbers has been subject of many researches 
in mathematics and the natural sciences.

3.3.  Power Law Spirals and Inequalities

The motivation for the name power law spirals is that the general 

form is a polar form of a classical power law y x
m
n= , with a linear 

relationship between r and q for the Archimedean spiral and a 
‘parabolic’ relationship for the Fermat spiral, whereby the parabola 
is defined as y = x2. In the geometric sense the parabola is a geo-
metric machine that turns rectangles with given area (the product 
of its sides a and b) into squares with the same area and sides ab ,  
the geometrical mean. In this case the rectangle has sides y and 1 

(the unit element) giving y · 1 = x · x [4,6]. E.g. y x=
3
2  equates the 

volume x3 of a cube x with a beam with the same volume, namely 
y2 · 1 or y · y · 1. Power laws are super or subparabola’s of the type  
y = |x|n, with n ∈, but n can be a real number. Special cases are the 
bisectrix of the first (and second quadrant) with n = 1.

Superparabola’s have n > 1, curving upward, and subparabo-
la’s have n < 1. Logarithms turn all super or subparabola’s into 
straight lines. In ancient Greek mathematics, the parabola is 
closely related to the geometric mean GM = ab  of two positive 
numbers (a, b). The Greek word parabolή (parabola) means 

precise fitting. The fundamental inequality ab
a b< +

2
 relates 

the geometric mean GM (turning a rectangle into a square with 

same area) to the arithmetic mean AM (turning a rectangle into a 
square with same circumference).

Two variables (x, y) raised to the same or different powers, can 
be added or multiplied (Table 3) [4]. In the case of addition, one  

has Lamé curves or superellipses [4–7] in the case 
x
a

y
b

n n

+ = 1  

(Figure 1b) and supercircles for |x|n + |y|n = Rn. For n = 2 we have 

Table 2 | Some special cases [2]

q pn na n= cos

n = 1/2 Cardioid n = –1/2 Parabola
n = 1 Circle n = −1 Line
n = 2 Lemniscate of Bernoulli n = −2 Equilateral hyperbola

3.  SPIRALS AND METRICS

3.1. � Spirals, Classical Curves and  
Special Polynomials

From Section 2, we have the following relationships:
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This corresponds to the classical curves y = xa or y = ax, i.e. y = f (x) 
is either a variable raised to a fixed power, or a fixed number raised 
to a variable power. The third one is directly related to Chebyshev 
polynomials [3,4].

3.2. � Logarithmic and (Co)sinusoidal Spirals 
and Chebyshev Polynomials

For r r q1 = =R cosn  and r r q2 = =I sinn  the terms cos nq and 
sin nq correspond to Chebyshev polynomials of first and second 
kind. Chebyshev polynomials link polar coordinates to functions 
f (x) in x in [−1; 1]
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Table 3 | Conic sections at the core, once more [4]

Variable x, 
power n, m Means Planar curve Applications

 xn + yn Arithmetic Superellipses  
(Figure 1)

Lamé curves
Minkowski distances

 xn = ym Geometric Superparabolas Power laws
Superhyperbolas

ellipses and circles. Figure 1b shows superellipses as intermediate 
between ellipse and rectangle and Figure 1c is a schematic drawing of 
a cross section of a culm of square bamboo, Chimonobambusa quad-
rangularis.

Addition is related to the arithmetic mean and multiplication to 
the geometric mean. Arithmetic and geometric means are found 
in every corner of mathematics and applied mathematics, in fun-

damental inequalities, such as the strict inequality ab
a b< +

2
 

(GM < AM) for any two positive integers. In the theory of surfaces, 
we have K ≤ H2 where K and H are Gaussian and mean curvatures 
respectively, defined between the two principal curvatures κ1, κ2 in 
any point on the surface.

The Gaussian curvature is K = κ1 · κ2 (the square of GM) and the 

mean (or Germain) curvature is the arithmetic mean 
k k1 2

2
+

. 

Inequalities such as K ≤ H2 are also known as natural curvature 
conditions. For exponential functions (and hence the logarithmic 
spiral) we have r = e±nx for n = ±1. The product gives the geometric 
mean, which is constant along the curve ( e0 1= ).  Half the sum 

is the arithmetic mean 
e ex x+ −

2
, and the definition of the catenary. 

Equality in the inequality GM ≤ AM is realised precisely in the 
lowest point of the catenary.

3.4.  From Lamé Curves to Antonelli-metrics

The definition of classical means is also directly related to the mea-
surement of distances. Lamé curves (Table 3) introduce anisotropy 
whereby lengths depend on the direction via Lamé curves, giving 
rise to the simplest Minkowski distances, with the classic Euclidean 
distance for n = 2 [7]:

			   x yp p+p �  (12)

with the taxicab metric for p = 1 and the max metric for p → ∞. 

Euclidean geometry is a special case for 1 1
1

p q
+ =  in |x|p + |y|q = 1,  

or p = q = 2.

For distances there are two equally valid viewpoints, namely an 
internal and an external one. In superellipses in the 45° direction, 
the distance from the origin is either longer than in the 0° or 90° 
direction, when viewed with Euclidean glasses, or of the same 
length, when the supercircle is considered as a unit circle for the 
given Minkowski metric [4].

In ecology the Antonelli–Shimada metric [8] was introduced, 
which is the Finsler metric F = eϕ · L with L the p-th root metric 
of Minkowski (for integer p ≥ 3). This metric is used to study seis-
mic wave propagation [9] in the framework of Finsler geometry.  

In 
� �x
a

y
b

p p

+ = 1, a and b express the anisotropy of the preferred 

orientation of aligned minerals along the earth’s surface and the 
Earth’s interior, respectively [9]. From this expression of the indi-
catrix (with a smooth wavefront) the fundamental function of the 
Lagrangian for crystal systems is changed into the generalized 
function for rocks (Eq.13). Interestingly, the original motivation of 
Gabriel Lamé was the study of crystals [10].
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The nature of wave propagation is explained by Huygens’ princi-
ple, where the envelope of the elementary wavefronts constitute a 
new wavefront, but in this anisotropic case the source point is not a 
point of minerals, but of a domain of rocks as a collection of min-
erals. For the seismic Finsler metric, the anisotropy of ray velocity 
is given by [9]:
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This particular expression of Lamé curves in polar coordinates led 
to Gielis transformations [Eq. (15)] originally introduced in Gielis 
[11]. It transforms a function f(𝜗 ), such as the above spirals or a 
constant function, such as R, the radius of a circle. This gives a 
stretchable radius or position vector. Equation (15) with m = 4, and 
p = n1,2,3 is Eq. (14).
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4. � FROM POSITION VECTOR TO  
ANISOTROPIC CURVATURE

4.1. � The Position Vector and the  
Equiangular Spirals

Two strong points of the polar coordinate system are (1) growth 
or development from one pole, and (2) the direct use of the position 

Figure 1 | (a) Gabriel Lamé, (b) superellipses as optimal solutions, combining 
advantages of ellipse and rectangle, (c) cross section of square bamboo [4].

a b c
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Figure 2 | Components in logarithmic spiral [11].

vector, one of the most important quantities in physics [12]. With 
the position vector curves can be defined kinematically. The cat-
enary for example is the curve that the focus of a parabola traces, 
when this parabola is rolled without slipping on a straight line. 
Actually, the profile curves of all constant mean curvature surfaces 
(H = constant) can be obtained by rolling conic sections without 
slipping over a line, a fact proved by Delaunay [7].

In the plane, with constant vector length a circle is traced out, even 
if the rotation is continued for any number of cycles. In general, 
the length of the vector can change, monotonically, periodically or 
a combination of both. If the length increases with constant veloc-
ity, the result is the spiral of Archimedes. If the lengthening is by a 
constant acceleration, the result is the logarithmic or equiangular 
spirals [3] with the remarkable property that during growth the size 
changes, but not the form: Eadum mutata resurgo is the epitaph of 
Bernoulli.

The equiangular spiral can further be characterised as follows [13]:

As is well known, the equiangular spirals, i.e. the curves Γ in 2  for 
which the angle a = ∠ (X, X′) ∈ [0, p/2] between the tangent direc-
tion of the curve and the direction of its position vector is constant, 
are the logarithmic spirals r(q ) = k · eaq whereby a = cotg a and 
k is any real constant. And, conversely, these spirals geometrically 
define the natural logarithmic and exponential functions; …. the con-
stant (p/4)-angled spiral with pole O and passing through the point  
E = (1,0) defines the natural exponential and logarithmic functions 
in a geometrical way: in particular this (p/4)-angled spiral defines the 
value of the natural exponential function by its distances r (q ) from 
the pole O for all angles 

q r

q

= æ
èç

ö
ø÷

Î

log

.
b a



Since the direction of the tangent fixes the direction of the normal, 
these conditions can also be expressed in terms of the normal 
direction.

Let T
X
X

=
¢
¢|| ||

 be the unit tangent vector field of a curve Γ in 2 , and let 

N = T⊥ be the unit normal vector field, such that {T, N} is a positively 
oriented orthonormal frame field along Γ in 2. Then, of course, for 
such a curve Γ to have constant angle a = ∠ (T,  X) is equivalent 

to have constant angle a
p a⊥ = ∠( ) = −





N X,
2

 and, so, the polar 

equation of the equiangular spirals with constant angle a or equiva-
lently with constant angle a ⊥ can be rewritten as r (q ) = k · eaq with 
a = tg a ⊥.

The equiangular spirals can also be characterised is in terms of grad 
r [13]:

Since for a general curve r (q ) in 2 , X′(q ) = r ′(q ) · (cos q, sin q ) +  
r (q ) · (−sin q, cos q ), it follows that the arclength parameter s based 

at q = 0 is given by s X d d( ) || ( ) ( )|| ( ) ( )
/
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that grad r = d r/ds = constant is a characterisation of the equiangu-
lar spirals in the Euclidean plane.

4.2.  Constant Ratio Submanifolds

One of the quintessential examples of logarithmic spirals in nature 
is the shell of Nautilus. For the logarithmic spiral one finds that the 
force which makes a Nautilus shell grow can be decomposed into 
growth in length and width [12,13]. When considering a planar 
form as a result of growth, the constant ratio between the resolvents 
of the force of growth “in length and in width” (Figure 2), or between 
the radial component of growth and the component of growth in 
the direction perpendicular to the radial one, may be considered as 
one of the most natural laws of natural growth [12,13].

This constant ratio aligns with contemporary differential geometry, 
which focuses strongly on submanifolds. A submanifold is a man-
ifold immersed or embedded in another manifold, of the same or 
higher dimension. A square inscribed in a circle is one example (or 
any two Lamé curves); another one is a soap bubble floating in the 
air is a submanifold in a larger environment, called air. In general, 
such submanifolds have a constant ratio between the tangential xT 
and normal component x⊥ of position vector x. The submanifold 

is said to be of constant ratio if the ratio 
x

x

T

⊥  is constant on M 

[12]. Constant ratio nD submanifolds Mn in (n + m) dimensional 
Euclidean spaces are defined by one of the most natural conditions 
by which pure geometry may determine the shape of submanifold 
Mn in n m+  [13]. The equiangular spiral is also a constant ratio  
submanifold in a plane. A circle is of constant ratio, because the 
angles between the tangent and the normal is 90° everywhere for 
every circle.

4.3. � Spirals as Functions of Curvature  
and Arc Length

The curvature might also be interpreted as tension from within and 
tension induced by the surroundings. For this we need to look at 
spirals from the point of view of their curvature

			   k q q( ) ,=
d
ds �  (16)

as a function of arc length. The curvature of a circle is the inverse of 
the radius of that circle itself, and this measure of curvature, based 
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Figure 3 | Dillen spirals.

on the circle, is used throughout science. For the circle, the cur-
vature is constant along the arc, and dependent on the size of the 

circle with R = 1
k

. In the logarithmic spiral r = eaq, the parameter 

a defines the curvature of the spiral.

In general, plane curves whose curvature is a polynomial func-
tion of the arc length s are called polynomial spirals [14,15]. 
These spirals can be called Dillen-spirals, in honour of Franki 
Dillen (1963–2013). These polynomial spirals were a by-product 
of his classification of hypersurfaces Mn of the (n + 1)-dimen-
sional Euclidean space n+1  with parallel higher order fundamen-
tal form, i.e. satisfying ∇kh = 0 for some k, where h is the second  
fundamental form of Mn [14].

For planar curves, if s goes to infinity the curvature function also 
goes to infinity. Since the curvature functions determines the 
curves up to an isometry (the fundamental theorem of Euclidean 
geometry), every spiral γ can be written as:

		  g ( ) cos( ), sin( )( ) ( )s P t P t
s

k

s

k=





∫ ∫
0 0
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The curvature kg k( ) ( )s P s= ′  is then a polynomial of degree (k – 1) 
of s. The curves in Figure 3 correspond to κ = s; κ = s2; κ = s2 – 2.19;  
κ = s2 – 4; κ = s2 +1; κ = 5s4 – 18s2 + 5 respectively.

•• For k = 0, g  is a straight line.

•• For k = 1, g  is a circle.

•• For k = 2, g   is a Cornu spiral or chlotoid, a curve used by Cornu in 
1874 in study on diffraction. Equation (17) has the Fresnel inte-
gral Pk (t) = t2 as special case and is already found in Bernouilli’s 
Opera [14,15].

•• For k = 3, there are infinitely many non-similar curves. For  
κ = s2 – D, with D ∈, the curve has two points of inflection for 
D > 0, one if D = 0 and none if D < 0.

The measure of tension created in curves by their very shape as 
they evolve in terms of the polar angles is by X″, the angular curva-
ture vector. ||X″|| = [(r″ – r )2 – 4r′2)]1/2 or rather its converse, gives 
a numerical measure of this angular tension [13]. This results from 
X″ (q ) = [r″ (q ) – r (q )] · (cos q, sin q ) + 2r′ (q ) · (−sin q, cos q ).

4.4. � Circle and Spirals: With or  
against the Flow

Curvature allows for the following characterisation of circle and 
logarithmic spiral as two curves with opposite tendency; which 
explains why these two curves are fundamental in the natural sci-
ences. The second derivative describes the tension in the curve 
giving two possible opposites: Either position vector and tension 
vector are parallel X || X″, or they are orthogonal X ⊥ X″ ⇔ X · X″ = 0.  
The way of least resistance, growing in the direction parallel to the 
tension (circle) or the shape will resist the tension, growing in a 
direction perpendicular to the tension (a logarithmic spiral).

For a curve with parametrization X (q ) = (r (q ) cos q, r (q ) sin q ), 
we have [16]:

   ′ = ′ − ′ +X ( ) ( ( )cos ( )sin , ( )sin ( )cos )q r q q q q r q q r q q , and

  ¢¢ = ¢¢ - - ¢
¢¢ - + ¢

X ( ) (( ( ) ( ))cos ( )sin ,
( ( ) ( ))sin

q r q r q q r q q
r q r q q r

2
2 (( )cos )q q

�  (18)

X (q ) is the position vector and X″ (q ) the acceleration or tension 
vector, a measure for the tension in the curve. Two conditions are 
considered, which give the two most natural geometrical shapes in 
nature: the circle and the logarithmic spiral [13].

Condition 1: Position vector || to curvature vector: (X || X″) if the 
vector product equals zero. This condition translates as going with 
the flow, to align with the stress. For vectors in 3  with orthonor-
mal base � � �e e e1 2 3, ,

� � �e e e1 2 3

0
2 2

r q r q
r r q r q r r q r q

cos sin
( )cos sin ( )sin cos¢¢ - - ¢ ¢¢ - + ¢ 00

0=
�

� (19)

The solution is r′ = 0 or r = constant, which is a circle.

Condition 2: Position vector ⊥ to curvature vector: (X ⊥ X″) if 
the scalar product equals zero. This condition translates as going 
against the flow, to oppose the stress

	   
r r r q rr q q
r r r q rr q q
( )cos sin cos
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′′ − − ′
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2

2
2

2 0 �

For r (q ) ≠ 0: rr″ – r2 = 0 or r″ = r. This is a family of solutions 
r (q ) = c1e

q + c2e
−q, with c1,2 constants. For X (0) = (a, 0) and X′ (0) =  

(a, a), then c1 + c2 = a, c1 – c2 = a, so c1 = a, c2 = 0, which gives  
r (q ) = aeq.

Descartes searched for a curve for which in each point the posi-
tion vector makes a fixed angle with the tangent vector. The 
parametrization X (q ) with r (q ) = aeq satisfies this condition, 

since 
X X
X X

c
× ¢

= =
¢

cos ( )q 20  and X · X′ = a2e2q, |X| = aeq and 

′ =X ae2 q , gives 

r q qq
= e n i n

c

in = +

=

cos sin
1
2

. Hence, the logarithmic spiral belongs 

to a family of curves for which X ⊥ X″ [13]. Curves growing from a 
pole such that their position vector permanently remains perpen-
dicular to the direction of angular tension, defines the natural expo-
nential function. For each angle q, the radial distance r = d (0, X)  
determines the value of eq.
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Figure 5 | Transformations on basic shapes circle and spiral [7].

5. � CURVATURE IN NATURAL SHAPES  
AND PHENOMENA

5.1.  Anisotropic Curvature

Curvature is based on a point-wise approximation of a curve with a 
circle as in Sections 4.3 and 4.4. The radius of this circle is collinear 
with the normal to the curve. This goes back to Nicolas Oresme 
[17] and is the foundation of almost all of our scientific meth-
ods. It is a local operation and the only curve to which the circle 
is osculating globally (i.e. at each point on the curve a circle can 
be fitted of the same size) is the circle itself. This is based on the  
Pythagorean Theorem. Equation (15) however is a generalisa-
tion of the Pythagorean Theorem; indeed for all exponents m = 4,  
n1,2,3 = 2, A = B = 1 the transformation equals 1 and describes a 
circle. Lamé curves are defined for m = 4, n1,2,3 = n, or for m = 4,  
n1 = p, n2,3 = q [4,11,18].

Hence, the structure of Eq. (15) can be considered as Pythagorean-
compact [4], and the resulting curves are unit circles. If measured 
against a classic circle, the radius stretches or shortens as a function 
of the angle, but if measured as its own, internal frame, the radius 
is constant (see Section 3.4). In the first case we have a variant of 
the classic Hooke’s Law F = kx, with force F and spring constant k 
(the external view point). In the second case however, x is a con-
stant (radius of a unit circle) and the spring constant is variable  
k = f(x) defined by Eq. (15) (the internal view point). It is the point 
of view that matters, whether measurements are taken internally 
(unit circle) or from the outside, with a Euclidean ruler.

A most natural question to ask is if the internal measurements can 
be taken as a measure of curvature. This would mean that any shape 
defined by Eq. (15) for f (q) constant with the classic unit circle 
for f (q) = 1, can be approximated exactly by the shape itself [4]. 
In Figure 4a the classical Euclidean rotational symmetry is shown, 
whereby red and green starfish are rotated relative to each other and 
do not overlap. In Figure 4b a green starfish coincides with its totally 
osculating curve, the red starfish. In Figure 4c a chain of balls rolls 
around the curve. The shortest way for the chain to roll around the 
starfish curve is tracking the curve precisely along its perimeter, and 
the chain is then osculating, and everywhere or totally osculating 
when the chain becomes infinitely thin. In other words, rotating the 
red starfish of Figure 4a relative to the green one, it should follow 
the geometry of the space as in Figure 4b or the chain in Figure 4c.

The original shape and the curvature shape then become one and 
the same and are totally osculating. This may seem trivial but this 
same procedure has been at the core of science for many centuries 
with the classic Euclidean circle in Oresme’s tradition. Analogous 

Figure 4 | (a) Classical rotational symmetry of a starfish. (b) A starfish (green) 
with its totally osculating starfish (red), and (c) chain along a starfish [4].

to the classic definition of curvature k = 1
R

, using the inverse of 

the circle, we can define Lamé-curvature as:

		  k
q

q qL
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1
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or, curvature based on Gielis transformations for ϱ (𝜗; A, B, n1, 
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As in the case of circles, the curvature is the inverse of the curve 
(unit circle) itself. Also, the transformations are Pythagorean com-
pact and expressed in classical trigonometric functions. Moreover, 
each shape has its associated trigonometric functions and its ded-
icated half-length pL or pGT (which themselves can be expressed in 
terms of classical trigonometric functions). Eqs. (15), (21) and (22) 
can also be rewritten in terms of Chebyshev polynomials [4].

Curvature is the most important invariant of form and shape in 
science and mathematics. Using κGT not only allows for a precise 
(Pythagorean compact) description, but also the study of the evo-
lution of curvatures. The Euclidean toolbox of transformations can 
be extended with Gielis tranformations.

5.2. � Anisotropic Curvature in  
Natural Shapes

The main advantage of Eqs. (15), (21) and (22) in combination with 
Section 4.4, is that a shape can be split into one of two basic function 
(circle and spiral as basic shapes in nature) (Figure 5) and the spe-
cific Gielis transformation, which then defines the shape-specific 
curvature. The shape specific curvature can then directly inform us 
about the preferred anisotropic directions (as changes in the length 
of the position vector) if we consider anisotropy as deviation from 
Euclidean perfection (related to classical differential equations).

From an intrinsic or internal geometrical point of view the shapes 
are isotropic, with the same unit distance in all directions. Examples 
are given below for circles, Rhodonea curves and for the logarith-
mic spiral. All are expressed in polar coordinates following Loria’s 
definition in Section 1. A circle is a spiral with constant radius 
vector. It is also a spiral in the sense of curvature in function of arc 
length, since for k = 1 in Eq. (17), γ is a circle.

As first example, Figure 6 displays tree rings in oak, cedar and teak 
(Tectona grandis). Teak is notable for having square young stems 
and branches, which is reflected in tree rings in the early years 
(Figure 6a). In later years the annual tree rings are either getting 
more round, or in lower parts of the trunk, align with the anchor-
ing system of the tree, e.g. oak (Figure 6b). Square sections can be 

a b c



	 J. Gielis et al. / Growth and Form 1(1) 1–8	 7

Figure 6 | Tree rings in (a) teak, (b) oak, and (c) white cedar [4].

Figure 7 | Flowers of Geranium, strawberry, Nicotiana and the 
corresponding Gielis polygons (upper row) [19].

Table 4 | Parameter values for flowers in Figure 7; m = 5 in all cases

 n1 3 3 1 1
 n2,3 3 1 1 1
 n4 3 3 5 2

found regularly in stems of Thuja occidentalis (Figure 6c). Annual 
tree rings reflect both the inherent anisotropy (building upon what 
is already there) and the influences of the year in which particular 
tree rings were built. Obviously, one can clearly separate the basic 
function circle and the anisotropy given by Eq. (15), with Lamé 
curvature κL defined by Eq. (21).

A second example are Rhodonea curves as sinusoidal spirals for  
r = cos nq or r = sin nq (Section 2.3). When these Rhodonea curves 
are subject to transformations by Eq. (15), flowers in Figure 7 lower 
row result. These can be considered as classical Euclidean rose or 
Rhodonea curves, forced or constrained to grow inside predefined 
polygons in Figure 7 upper row. In fact, such constraining can clearly 
be observed in the earliest stages of development in flowers [4].

These flowers are defined by Eq. (23) with parameter values in 
Table 4. They are directly related to the trigonometric functions 
associated with the m-polygons in the upper row of Figure 7, which 
are defined by Eq. (15).
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Their expression using m/2 in itself is interesting, since this can  
be rewritten in terms of the recently defined pseudo-Chebyshev 
functions with T(1/2) (x) = cos [(1/2) arccos x] and T(k + 1/2) (x) =  
cos [(k + 1/2) arccos x] [3,20]. This means that not only the curvature 

of the polygons can be defined as κGT by Eq. (22), but also the cur-
vature of the associated trigonometric functions.

As third example, shells of snails and Nautilus can be described 
as spirals with r (q) = a · ebq. In most molluscs and ammonoids 
however, the length of the radius vector varies periodically (at 
least from the “Euclidean” point of view). For a = f (υ) defined by  
Eq. (15), we obtain Figure 8b, which is reflected in Trapezium horse 
conch (Figure 8a) and ammonoid like shells (Figure 8c). Once 
more, the Euclidean function can be separated from its curvature 
part κGT. In a wide variety of natural shapes, these transformations 
and curvatures describe both deviations from Euclidean perfec-
tion, and highlight the intrinsic anisotropy, which is imposed from 
the earliest stage of development.

Further examples are the Antonelli–Shimada metric and the seis-
mic Finsler metric (14) with Lamé transformations κL on the basic 
functions: the m-th root metric of Minkowski in the first case, and 
n1,2,3 = n, m = 4 in Eq. (15) in the second. The final example is the 
extension of the class of constant mean curvatures (CMC) (plane, 
cylinder, sphere, catenoid, undoloid and nodoid) to constant aniso-
tropic mean curvatures (CAMC) surfaces [21]; they acquire shapes 
that are observed in e.g. snowflakes [4].

6. � SPECIAL FUNCTIONS AND  
OCCAM’S RAZOR

Special polynomials, in particular Chebyshev polynomials, are 
involved in almost every aspect of this paper. They appear in the 
logarithmic spiral, giving rise to pseudo-Chebyshev functions, 
and Eq. (15) can be rewritten in terms of Chebyshev polynomials 
of first and second kind. The Lamé curves and circles are special 
cases. By defining the anisotropic curvature in terms of Eq. (15), 
both shape description and anisotropic curvature can be written as 
Chebyshev polynomials, or in certain cases as pseudo-Chebyshev 
functions, as in the flowers (Figure 7).

Equation (15) and its generalizations to spherical and cylindrical 
coordinates have been successfully used to extend the use of the 
Fourier projection method for solving boundary value problems 
involving the Laplacian and under different boundary conditions 
(Dirichlet, Neumann, Robin) on 2D and 3D domains, includ-
ing Riemann surfaces and shells [22–25]. The solution could be 
expressed in terms of r (q ) and a Fourier series, invoking Bessel 
and Legendre functions depending on the problem. Key was 
the generalization of the Laplacian morphing any normal polar 
domain into a circular domain (and vice versa). Laplace equations 
(whose solutions are harmonic functions) and Helmholtz equa-
tions (its solutions are metaharmonic functions) appear every-
where in mathematical physics, and we now have one coherent 
strategy, based on the original Fourier projection method, to solve  

Figure 8 | (a) Trapezium horse conch. (b and c) Logarithmic superspiral.

a b c

a b c
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boundary value problems in a very wide range of domains. In the 
spirit of the current paper: the Laplace operator of any curve Γ in 2  

given by ∆ = −d
ds

2

2 .  The tension field (or curvature vector field) of  Γ in  

2  satisfies 
d X
ds

N X
2

2 = = −k ∆ .  So, the direction of the Laplacian ΔX 

is automatically fixed by the tangent direction T
dX
ds

=  of the curve 

by the Euclidean structure in the plane, −T and N being mutually 
orthogonal. This may be used to rephrase a previous statement as 
follows: The equiangular spirals are characterised by the property to 
have a constant angle a ⊥ = ∠ (X, ΔX) [13].

Equation (15) is Pythagorean-compact [4]. For specific values of m 
and n, Lamé curves result and circles when the transformation is 
equal to one (for m = 0, or for n = 2 for any m, given that A = B). 
Moreover, this representation is topologically simple in the sense of 
Arnold and Oleinik [4]. Lamé curves for example are trinomials, a 
summation of monomials in pure variables.

		    ( ) =
±




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J 1

2 31 ■ ■

б
�  (24)

This Pythagorean compact nature can be exploited further: the ■ 
and ∴ in Eq. (24) can be substituted for by variables or functions. 
In Chacón [26], Jacobian Elliptic functions were proposed for ■, 
and Eq. (24) was further generalised in Gielis et al. [27], with e.g. 
sums of trigonometric functions. It can be tightly woven into the 
existing framework of mathematical physics and the natural sci-
ences, as 21st century generalization of Pythagoras and as the most 
compact description in the sense of Occam’s Razor.

As an extremely compact shape descriptor (a generalization of 
Pythagoras and conic sections) and in its new role describing anisotro-
pic curvature to study natural forms and their growth and evolution, 
this Pythagorean compact formulation, complements the common 
methods in mathematical analysis of (1) infinite series (Taylor, Euler, 
Bernoulli, Bell, Fourier, Bessel, Legendre….), or (2) finite series, such 
as partial versions of the above or Chebyshev polynomials; these share 
a common descent with the description of natural shapes [5].
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