|
Record |
Links |
|
Author |
Joao, S.M.; Andelkovic, M.; Covaci, L.; Rappoport, T.G.; Lopes, J.M.V.P.; Ferreira, A. |
|
|
Title |
KITE : high-performance accurate modelling of electronic structure and response functions of large molecules, disordered crystals and heterostructures |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Royal Society Open Science |
Abbreviated Journal |
Roy Soc Open Sci |
|
|
Volume |
7 |
Issue |
2 |
Pages |
191809-191832 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT) |
|
|
Abstract |
We present KITE, a general purpose open-source tight-binding software for accurate real-space simulations of electronic structure and quantum transport properties of large-scale molecular and condensed systems with tens of billions of atomic orbitals (N similar to 10(10)). KITE's core is written in C++, with a versatile Python-based interface, and is fully optimized for shared memory multi-node CPU architectures, thus scalable, efficient and fast. At the core of KITE is a seamless spectral expansion of lattice Green's functions, which enables large-scale calculations of generic target functions with uniform convergence and fine control over energy resolution. Several functionalities are demonstrated, ranging from simulations of local density of states and photo-emission spectroscopy of disordered materials to large-scale computations of optical conductivity tensors and real-space wave-packet propagation in the presence of magneto-static fields and spin-orbit coupling. On-the-fly calculations of real-space Green's functions are carried out with an efficient domain decomposition technique, allowing KITE to achieve nearly ideal linear scaling in its multi-threading performance. Crystalline defects and disorder, including vacancies, adsorbates and charged impurity centres, can be easily set up with KITE's intuitive interface, paving the way to user-friendly large-scale quantum simulations of equilibrium and non-equilibrium properties of molecules, disordered crystals and heterostructures subject to a variety of perturbations and external conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000518020200001 |
Publication Date |
2020-02-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2054-5703 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.5 |
Times cited |
19 |
Open Access |
OpenAccess |
|
|
Notes |
; T.G.R. and A.F. acknowledge support from the Newton Fund and the Royal Society through the Newton Advanced Fellowship scheme (ref. no. NA150043). M.A. and L.C. acknowledge support from the Trans2DTMD FlagEra project and the VSC (Flemish Supercomputer Center). A.F. acknowledges support from the Royal Society through a University Research Fellowship (ref. nos. UF130385 and URF-R-191021) and an Enhancement Award (ref. no. RGF-EA-180276). T.G.R. acknowledges the support from the Brazilian agencies CNPq and FAPERJ and COMPETE2020, PORTUGAL2020, FEDER and the Portuguese Foundation for Science and Technology (FCT) through project POCI-01-0145-FEDER-028114. S.M.J. is supported by Fundacao para a Ciencia e Tecnologia (FCT) under the grant no. PD/BD/142798/ 2018. S.M.J. and J.M.V.P.L. acknowledge financial support from the FCT, COMPETE 2020 programme in FEDER component (European Union), through projects POCI-01-0145-FEDER028887 and UID/FIS/04650/2013. S.M.J. and J.M.V.P.L. further acknowledge financial support from FCT through national funds, co-financed by COMPETE-FEDER (grant no. M-ERANET2/0002/2016 -UltraGraf) under the Partnership Agreement PT2020. ; |
Approved |
Most recent IF: 3.5; 2020 IF: 2.243 |
|
|
Call Number |
UA @ admin @ c:irua:167751 |
Serial |
6556 |
|
Permanent link to this record |