|
Record |
Links |
|
Author |
Geerlings, N.M.J.; Karman, C.; Trashin, S.; As, K.S.; Kienhuis, M.V.M.; Hidalgo-Martinez, S.; Vasquez-Cardenas, D.; Boschker, H.T.S.; De Wael, K.; Middelburg, J.J.; Polerecky, L.; Meysman, F.J.R. |
|
|
Title |
Division of labor and growth during electrical cooperation in multicellular cable bacteria |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Proceedings Of The National Academy Of Sciences Of The United States Of America |
Abbreviated Journal |
P Natl Acad Sci Usa |
|
|
Volume |
117 |
Issue |
10 |
Pages |
5478-5485 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
Multicellularity is a key evolutionary innovation, leading to coordinated activity and resource sharing among cells, which generally occurs via the physical exchange of chemical compounds. However, filamentous cable bacteria display a unique metabolism in which redox transformations in distant cells are coupled via long-distance electron transport rather than an exchange of chemicals. This challenges our understanding of organismal functioning, as the link among electron transfer, metabolism, energy conservation, and filament growth in cable bacteria remains enigmatic. Here, we show that cells within individual filaments of cable bacteria display a remarkable dichotomy in biosynthesis that coincides with redox zonation. Nanoscale secondary ion mass spectrometry combined with 13 C (bicarbonate and propionate) and 15 N-ammonia isotope labeling reveals that cells performing sulfide oxidation in deeper anoxic horizons have a high assimilation rate, whereas cells performing oxygen reduction in the oxic zone show very little or no label uptake. Accordingly, oxygen reduction appears to merely function as a mechanism to quickly dispense of electrons with little to no energy conservation, while biosynthesis and growth are restricted to sulfide-respiring cells. Still, cells can immediately switch roles when redox conditions change, and show no differentiation, which suggests that the “community service” performed by the cells in the oxic zone is only temporary. Overall, our data reveal a division of labor and electrical cooperation among cells that has not been seen previously in multicellular organisms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000519530400054 |
Publication Date |
2020-02-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0027-8424; 1091-6490 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
11.1 |
Times cited |
6 |
Open Access |
|
|
|
Notes |
; We thank Arnold van Dijk for helping with the GasBench isotope ratio mass spectrometry analysis. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from the Netherlands Organisation for Scientific Research (NWO) in the Netherlands (grant 023.005.049). K.S.A. received financial support from the Olaf Schuiling fund. F.J.R.M. was financially supported by the Research Foundation Flanders (FWO) via grant G043119N, and the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). J.J.M. was supported by the Ministry of Education via the Netherlands Earth System Science Centre. The NanoSIMS facility was partly supported by an NWO large infrastructure subsidy to J.J.M. (175.010.2009.011). ; |
Approved |
Most recent IF: 11.1; 2020 IF: 9.661 |
|
|
Call Number |
UA @ admin @ c:irua:166452 |
Serial |
6487 |
|
Permanent link to this record |