|
Record |
Links |
|
Author |
Wei, P.; Ke, B.; Xing, L.; Li, C.; Ma, S.; Nie, X.; Zhu, W.; Sang, X.; Zhang, Q.; Van Tendeloo, G.; Zhao, W. |
|
|
Title |
Atomic-resolution interfacial structures and diffusion kinetics in Gd/Bi0.5Sb1.5Te3 magnetocaloric/thermoelectric composites |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Materials Characterization |
Abbreviated Journal |
Mater Charact |
|
|
Volume |
163 |
Issue |
|
Pages |
110240-110248 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The demand of a full solid-state cooling technology based on magnetocaloric and thermoelectric effects has led to a growing interest in screening candidate materials with high-efficiency cooling performance, which also stimulates the exploration of magnetocaloric/thermoelectric hybrid cooling materials. A series of Gd/Bi0.5Sb1.5Te3 composites was fabricated in order to develop the hybrid cooling technology. The chemical composition, phase structure and diffusion kinetics across the reaction layers in Gd/Bi0.5Sb1.5Te3 composites were analyzed at different reaction temperatures. Micro-area elemental analysis indicates that the formation of interfacial phases is dominated by the diffusion of Gd and Te while the diffusion of Bi and Sb is impeded. The interfacial phases, including GdTe2, GdTe3, and intermediate phases GdTex, are identified by atomic-resolution electron microscopy. The concentration modulation of Gd and Te is adapted by altering the stacking of the Te square-net sheets and the corrugated GdTe sheets. Boltzmann-Marano analysis was applied to reveal the diffusion kinetics of Gd and Te in the interfacial layers. The diffusion coefficients of Te in GdTe2 and GdTe3 are much higher than that of Gd while in GdTe the situation is reversed. This study provides a clear picture to understand the interfacial phase structures down to an atomic scale as well as the interfacial diffusion kinetics in Gd/Bi0.5Sb1.5Te3 hybrid cooling materials. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000551341700045 |
Publication Date |
2020-03-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1044-5803 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.7 |
Times cited |
1 |
Open Access |
Not_Open_Access |
|
|
Notes |
; This work was supported by National Natural Science Foundation of China (Nos. 91963122, 11834012, 51620105014, 51521001, 51902237), National Key Research and Development Program of China (No. 2018YFB0703603), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 183101006). XRD and EPMA experiments were performed at the Center for Materials Research and Testing of Wuhan University of Technology. ; |
Approved |
Most recent IF: 4.7; 2020 IF: 2.714 |
|
|
Call Number |
UA @ admin @ c:irua:171317 |
Serial |
6456 |
|
Permanent link to this record |