toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Gielis, J.; Caratelli, D.; Shi, P.; Ricci, P.E. url  doi
openurl 
  Title A note on spirals and curvature Type A1 Journal article
  Year (down) 2020 Publication Growth and form Abbreviated Journal  
  Volume 1 Issue 1 Pages 1-8  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Starting from logarithmic, sinusoidal and power spirals, it is shown how these spirals are connected directly with Chebyshev polynomials, Lamé curves, with allometry and Antonelli-metrics in Finsler geometry. Curvature is a crucial concept in geometry both for closed curves and equiangular spirals, and allowed Dillen to give a general definition of spirals. Many natural shapes can be described as a combination of one of two basic shapes in nature—circle and spiral—with Gielis transformations. Using this idea, shape description itself is used to develop a novel approach to anisotropic curvature in nature. Various examples are discussed, including fusion in flowers and its connection to the recently described pseudo-Chebyshev functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2020-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167061 Serial 6569  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: