toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tadić, M.; Čukarić, N.; Arsoski, V.; Peeters, F.M. url  doi
openurl 
  Title Excitonic Aharonov-Bohm effect : unstrained versus strained type-I semiconductor nanorings Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 12 Pages (down) 125307-125307,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state. No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described by a two-level model with off-diagonal coupling t. The later transfer integral expresses the Coulomb coupling between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in (In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I (In,Ga)As/GaAs nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294777400013 Publication Date 2011-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Ministry of Education and Science of Serbia, the Flemish Science Foundation (FWO-Vl), the EU NoE: SANDiE, and the Belgian Science Policy (IAP). The calculations were performed on the CalcUA and Seastar computer clusters of the University of Antwerp. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92326 Serial 1122  
Permanent link to this record
 

 
Author Kálmán, O.; Földi, P.; Benedict, M.G.; Peeters, F.M. url  doi
openurl 
  Title Magnetoconductance of rectangular arrays of quantum rings Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 12 Pages (down) 125306-125306,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electron transport through multiterminal rectangular arrays of quantum rings is studied in the presence of Rashba-type spin-orbit interaction (SOI) and of a perpendicular magnetic field. Using the analytic expressions for the transmission and reflection coefficients for single rings we obtain the conductance through such arrays as a function of the SOI strength, of the magnetic flux, and of the wave vector k of the incident electron. Due to destructive or constructive spin interferences caused by the SOI, the array can be totally opaque for certain ranges of k, while there are parameter values where it is completely transparent. Spin resolved transmission probabilities show nontrivial spin transformations at the outputs of the arrays. When pointlike random scattering centers are placed between the rings, the Aharonov-Bohm peaks split, and an oscillatory behavior of the conductance emerges as a function of the SOI strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259691500047 Publication Date 2008-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:94598 Serial 1913  
Permanent link to this record
 

 
Author Tavernier, M.B.; Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Ground state and vortex structure of the N=5 and N=6 electron quantum dot Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 12 Pages (down) 125305,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000240872500054 Publication Date 2006-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:61000 Serial 1383  
Permanent link to this record
 

 
Author Xu, W.; Dong, H.M.; Li, L.L.; Yao, J.Q.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Optoelectronic properties of graphene in the presence of optical phonon scattering Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 12 Pages (down) 125304-125304,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study in detail the optoelectronic properties of graphene. Considering the electron interactions with photons and phonons, we employ the mass- and energy-balance equations to self-consistently evaluate the photoinduced carrier densities, the optical conductance, and the transmission coefficient in the presence of a linearly polarized radiation field. We demonstrate that the photoinduced carrier densities increase around the electron-photon-phonon resonant transition. They depend strongly on the radiation intensity and frequency, temperature, and dark carrier density. For short-wavelength radiation (L<3 μm), we obtain the universal optical conductance σ0=e2/(4ℏ). Importantly, there exists an optical-absorption window in the radiation wavelength range 4100 μm, which is induced by different transition energies required for interband and intraband optical absorption. The position and width of this window depend sensitively on the temperature and the carrier density of the system. These theoretical results are in line with recent experimental findings and indicate that graphene exhibits important features not only in the visible regime but also in the midinfrared bandwidth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281516500009 Publication Date 2010-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Chinese Academy of Sciences, National Natural Science Foundation of China, and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84260 Serial 2496  
Permanent link to this record
 

 
Author Wang, X.F.; Peeters, F.M. url  doi
openurl 
  Title Beating of oscillations in transport coefficients of a one-dimensionally periodically modulatedtwo-dimensional electron gas in the presence of spin-orbit interaction Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages (down) 125301,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228923300074 Publication Date 2005-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69405 Serial 223  
Permanent link to this record
 

 
Author Sidor, Y.; Partoens, B.; Peeters, F.M.; Ben, T.; Ponce, A.; Sales, D.L.; Molina, S.I.; Fuster, D.; González, L.; González, Y. url  doi
openurl 
  Title Excitons in coupled InAs/InP self-assembled quantum wires Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 12 Pages (down) 125120,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000245330200036 Publication Date 2007-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:64293 Serial 1128  
Permanent link to this record
 

 
Author Branchaud, S.; Kam, A.; Zawadzki, P.; Peeters, F.M.; Sachrajda, A.S. url  doi
openurl 
  Title Transport detection of quantum Hall fluctuations in graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 12 Pages (down) 121406,1-121406,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Low-temperature magnetoconductance measurements were made in the vicinity of the charge neutrality point (CNP). Two origins for the fluctuations were identified close to the CNP. At very low magnetic fields there exist only mesoscopic magnetoconductance quantum interference features which develop rapidly as a function of density. At slightly higher fields (>0.5 T), close to the CNP, additional fluctuations track the quantum Hall (QH) sequence expected for monolayer graphene. These additional features are attributed to effects of locally charging individual QH localized states. These effects reveal a precursor to the quantum Hall effect since, unlike previous transport observations of QH dot charging effects, they occur in the absence of quantum Hall plateaus or Shubnikov-de Haas oscillations. From our transport data we are able to extract parameters that characterize the inhomogeneities in our device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248900026 Publication Date 2010-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; We would like to acknowledge important motivating discussions with Louis Gaudreau, Ghislain Granger, Pawel Hawrylak, Devrim Guclu, Josh Folk, and Mark Lundeberg. A. S. S. and F. M. P. acknowledge funding from CIFAR. A. S. S. and S. B. acknowledge assistance from NSERC. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82275 Serial 3723  
Permanent link to this record
 

 
Author Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Enhancement of Coulomb drag in double-layer graphene structures by plasmons and dielectric background inhomogeneity Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 12 Pages (down) 121405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The drag of massless fermions in graphene double-layer structures is investigated over a wide range of temperatures and interlayer separations. We show that the inhomogeneity of the dielectric background in such graphene structures, for experimentally relevant parameters, results in a significant enhancement of the drag resistivity. At intermediate temperatures the dynamical screening via plasmon-mediated drag enhances the drag resistivity and results in an upturn in its behavior at large interlayer separations. In a range of interlayer separations, corresponding to the crossover from strong to weak coupling of graphene layers, we find that the decrease of the drag resistivity with interlayer spacing is approximately quadratic. This dependence weakens below this range of interlayer spacing while for larger separations we find a cubic (quartic) dependence at intermediate (low) temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309178100003 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; We acknowledge support from the Flemisch Science Foundation (FWO-Vl) and the Belgian Science Policy (BELSPO). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101834 Serial 1060  
Permanent link to this record
 

 
Author Saniz, R.; Barbiellini, B.; Denison, A.B.; Bansil, A. url  doi
openurl 
  Title Erratum: Spontaneous magnetization and electron momentum density in three-dimensional quantum dots [Phys. Rev. B 68, 165326 (2003)] Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 11 Pages (down) 119907  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295263600015 Publication Date 2011-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.836 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92919 Serial 1081  
Permanent link to this record
 

 
Author Matulis, A.; Masir, M.R.; Peeters, F.M. url  doi
openurl 
  Title Application of optical beams to electrons in graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages (down) 115458-115458,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The technique of beam optics is applied to the description of the wave function of Dirac electrons. This approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist, while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288896400013 Publication Date 2011-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (Grant No. FWO-Vl), by the Belgian Science policy (IAP), and (in part) by the Lithuanian Science Council under project No. MIP-79/2010. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89377 Serial 142  
Permanent link to this record
 

 
Author Li, B.; Peeters, F.M. url  doi
openurl 
  Title Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages (down) 115448-115448,13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By applying an electric field perpendicular to a semiconductor quantum ring we show that it is possible to modify the single particle wave function between quantum dot (QD)-like and ring-like. The constraints on the geometrical parameters of the quantum ring to realize such a transition are derived. With such a perpendicular electric field we are able to tune the Aharanov-Bohm (AB) effect for both the single particle and for excitons. The tunability is in both the strength of the AB effect as well as in its periodicity. We also investigate the strain induce potential inside the self-assembled quantum ring and the effect of the strain on the AB effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288855200012 Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the EU-NoE: SANDiE, the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC, vzw collaborative project. We are grateful to Prof. M. Tadic and Dr. Fei Ding for stimulating discussions. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89376 Serial 3744  
Permanent link to this record
 

 
Author Barbier, M.; Peeters, F.M.; Vasilopoulos, P.; Milton Pereira, J. url  doi
openurl 
  Title Dirac and Klein-Gordon particles in one-dimensional periodic potentials Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages (down) 115446,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800198 Publication Date 2008-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 191 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69633 Serial 706  
Permanent link to this record
 

 
Author Szafran, B.; Barczyk, E.; Peeters, F.M.; Bednarek, S. url  doi
openurl 
  Title Exciton spectra in vertical stacks of triple and quadruple quantum dots in an electric field Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages (down) 115441,1-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800193 Publication Date 2008-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69632 Serial 1114  
Permanent link to this record
 

 
Author Krüger, P.; da Pieve, F.; Osterwalder, J. url  doi
openurl 
  Title Real-space multiple scattering method for angle-resolved photoemission and valence-band photoelectron diffraction and its application to Cu(111) Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages (down) 115437,1-115437,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A computational method is presented for angle-resolved photoemission spectra (ARPES) and photoelectron diffraction (PED) in the ultraviolet regime. The one-step model is employed and both initial valence and final continuum states are calculated using the finite-cluster, real-space multiple scattering method. Thereby the approach is versatile and provides a natural link to core-level PED. The method is applied to the Cu(111) valence band and good agreement with experiment is found for both ARPES spectra and PED patterns. When the PED patterns are integrated over a filled band of a single-orbital symmetry, such as Cu-3d, we show, both numerically and analytically, that the exact theory with delocalized initial states can be replaced by the much simpler, core-level-type theory where the initial states are taken as localized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288594500005 Publication Date 2011-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89599 Serial 2831  
Permanent link to this record
 

 
Author da Costa, D.R.; Zarenia, M.; Chaves, A.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Energy levels of bilayer graphene quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages (down) 115437  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within a tight binding approach we investigate the energy levels of hexagonal and triangular bilayer graphene (BLG) quantum dots (QDs) with zigzag and armchair edges. We study AA- and AB-(Bernal) stacked BLG QDs and obtain the energy levels in both the absence and the presence of a perpendicular electric field (i.e., biased BLG QDs). Our results show that the size dependence of the energy levels is different from that of monolayer graphene QDs. The energy spectrum of AB-stacked BLG QDs with zigzag edges exhibits edge states which spread out into the opened energy gap in the presence of a perpendicular electric field. We found that the behavior of these edges states is different for the hexagonal and triangular geometries. In the case of AA-stacked BLG QDs, the electron and hole energy levels cross each other in both cases of armchair and zigzag edges as the dot size or the applied bias increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000361663700003 Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation under the process number BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, and the Brazilian Program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128726 Serial 4173  
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Wave-packet scattering on graphene edges in the presence of a pseudomagnetic field Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 11 Pages (down) 115434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of a Gaussian wave packet in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time-dependent Schrodinger equation for the tight-binding model Hamiltonian. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well-known skipping orbits are observed. However, our results demonstrate that in the case of a pseudomagnetic field, induced by nonuniform strain, the scattering by an armchair edge results in a nonpropagating edge state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309174100005 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; Discussions with E. B. Barros are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE (project CONGRAN), and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101833 Serial 3907  
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 11 Pages (down) 115432,1-115432,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248800145 Publication Date 2010-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 142 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82274 Serial 3148  
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Resonant valley filtering of massive Dirac electrons Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 11 Pages (down) 115431  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similarly to the way spintronics uses electron spin. We show how a double-barrier structure consisting of electric and vector potentials can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission through a finite number of barriers and we obtain the energy spectrum of a superlattice consisting of electric and vector potentials. When a mass term is included, the energy bands and energy gaps at the K and K′ points are different and they can be tuned by changing the potential.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309173300004 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 55 Open Access  
  Notes This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro- GRAPHENE within the project CONGRAN, and the Flemish Science Foundation (FWO-Vl). Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101835 Serial 2896  
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 11 Pages (down) 115428  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000324690400008 Publication Date 2013-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111168 Serial 1011  
Permanent link to this record
 

 
Author Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Quasibound states of quantum dots in single and bilayer graphene Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages (down) 115423,1-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800175 Publication Date 2008-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 153 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69631 Serial 2799  
Permanent link to this record
 

 
Author Milton Pereira, J.; Peeters, F.M.; Vasilopoulos, P. url  doi
openurl 
  Title Landau levels and oscillator strength in a biased bilayer of graphene Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 11 Pages (down) 115419,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249786400110 Publication Date 2007-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 91 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:65694 Serial 1772  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Fabry-Pérot resonances in graphene microstructures: influence of a magnetic field Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 11 Pages (down) 115417-115417,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Fabry-Pérot resonances in the transmission through single and double, graphene-based barriers (of height V) and wells are investigated and their dependence on an applied perpendicular magnetic field. For rectangular barriers the conductance decreases with increasing magnetic field while the resonances weaken (become more pronounced) with increasing magnetic field for EF<V (EF>V). The position of the resonances exhibit a linear shift with magnetic field which move to lower (higher) energy for EF<V (EF>V). Compared to semielliptic- or Gaussian-shaped barriers they show a smaller number of resonances in the absence of a magnetic field and an overall lower conductance but the resonant structure is more pronounced. The conductance of asymmetric double barriers show two major regions of resonances while the symmetric ones show one, that of three asymmetric barriers three, and so on.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281723100007 Publication Date 2010-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 74 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84871 Serial 1167  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M. url  doi
openurl 
  Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume Issue Pages (down) 115415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800167 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:104033 Serial 4517  
Permanent link to this record
 

 
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M. url  doi
openurl 
  Title Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 11 Pages (down) 115408-115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000323944600005 Publication Date 2013-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110716 Serial 836  
Permanent link to this record
 

 
Author Çakir, D.; Otalvaro, D.M.; Brocks, G. url  doi
openurl 
  Title From spin-polarized interfaces to giant magnetoresistance in organic spin valves Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 11 Pages (down) 115407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the spin-polarized electronic transport through a molecular bilayer spin valve from first principles, and establish the link between the magnetoresistance and the spin-dependent interactions at the metal-molecule interfaces. The magnetoresistance of a Fe vertical bar bilayer-C-70 vertical bar Fe spin valve attains a high value of 70% in the linearresponse regime, but it drops sharply as a function of the applied bias. The current polarization has a value of 80% in linear response and also decreases as a function of bias. Both these trends can be modeled in terms of prominent spin-dependent Fe vertical bar C-70 interface states close to the Fermi level, unfolding the potential of spinterface science to control and optimize spin currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000332504900007 Publication Date 2014-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128321 Serial 4596  
Permanent link to this record
 

 
Author Xu, T.; Nys, J.-P.; Addad, A.; Lebedev, O.I.; Urbieta, A.; Salhi, B.; Berthe, M.; Grandidier, B.; Stievenard, D. url  doi
openurl 
  Title Faceted sidewalls of silicon nanowires: Au-induced structural reconstructions and electronic properties Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 11 Pages (down) 115403,1-115403,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si nanowires with a ⟨111⟩ orientation, synthesized by vapor-liquid-solid process with low silane partial pressure reactant and gold as the catalyst, are known to exhibit sawtooth facets containing gold adsorbates. We report herein the study of the nanowire morphology by means of transmission electron microscopy and scanning tunneling microscopy. The nanowires consist of faceted sidewalls. The number of the sidewalls changes from 12 to 6 along the growth axis, giving rise to nanowires with an irregular hexagonal cross section at their base. The sidewalls are covered with Au-rich clusters. Their facets also exhibit atomic structures that reveal the presence of gold, resulting from the diffusion of gold during the growth. Based on these observations, the tapering of the nanowire is found to be related to two contributions: the reduction in the catalyst particle size during the growth and lateral overgrowth from the direct incorporation of Si species onto the nanowire sidewalls. Because the rearrangement of atoms at surfaces and interfaces might affect the growth kinetics, the trigonal symmetry as well as the higher lateral growth rate on the widest sidewalls are explained from the existence of an interfacial atomic structure with two inequivalent parts in the unit cell. Finally, spectroscopic measurements were performed on the major facets and revealed a metallic behavior at 77 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000276248800116 Publication Date 2010-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82273 Serial 1168  
Permanent link to this record
 

 
Author Li, B.; Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. url  doi
openurl 
  Title Dielectric mismatch effect on shallow impurity states in a semiconductor nanowire Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue Pages (down) 115335,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800131 Publication Date 2008-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69630 Serial 692  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages (down) 115328-115328,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A unified theory of phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride (h-BN) is derived. The dynamical matrix is calculated on the basis of an empirical force constant model of intralayer valence and interlayer van der Waals interactions. Coulomb interactions are calculated by Ewalds method, adapted for the three-dimensional (3D) and the multilayer case. The deformation of the ionic charge distribution with long-wave lattice displacements is taken into account. Special attention is devoted to the nonanalytic long-range Coulomb contribution to the dynamical matrix which is different for the 3D crystal and the multilayer case. Consequently there is a splitting of the transverse optical (TO) and longitudinal optical (LO) phonon branches of E1u symmetry and a discontinuity of the A2u branch at the Γ point in 3D h-BN. No such splitting and discontinuity at Γ are present in multilayer crystals with a finite number N of layers. There a diverging bundle of N overbending optical phonon branches emerges from Γ. Borns long-wave theory is applied and extended for the study of piezoelectricity in layered crystals. While 3D h-BN and h-BN multilayers with an even number of layers (symmetry D6h) are not piezoelectric, multilayers with an uneven number of Nu layers (symmetry D3h) are piezoelectric; the piezoelectric coefficient e1,11 is inversely proportional to Nu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288783700005 Publication Date 2011-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 82 Open Access  
  Notes ; Discussions with G. Heger, B. Partoens, and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-V1) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89602 Serial 2603  
Permanent link to this record
 

 
Author Krstajić, P.; Peeters, F.M. url  doi
openurl 
  Title Magnetotunneling of holes through single and double barriers using a multiband treatment Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages (down) 115321,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228065500096 Publication Date 2005-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69404 Serial 1937  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Biexciton spin and angular momentum transitions in vertically coupled quantum dots Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages (down) 115319,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228065500094 Publication Date 2005-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69403 Serial 232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: