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Wave-packet scattering on graphene edges in the presence of a pseudomagnetic field
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The scattering of a Gaussian wave packet in armchair and zigzag graphene edges is theoretically investigated
by numerically solving the time-dependent Schrödinger equation for the tight-binding model Hamiltonian. Our
theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge
we observe scattering within the same valley, or between different valleys. In the presence of an external
magnetic field, the well-known skipping orbits are observed. However, our results demonstrate that in the
case of a pseudomagnetic field, induced by nonuniform strain, the scattering by an armchair edge results in a
nonpropagating edge state.
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I. INTRODUCTION

Due to its unique electronic properties, graphene has
become a topic of intensive study in recent years. Within the
low-energy approximation for the tight-binding Hamiltonian
of graphene, electrons behave as massless Dirac fermions,
with a linear energy dispersion.1 This leads to a plethora of
interesting physical phenomena, ranging from Klein tunneling
and other quasirelativistic effects2,3 to the existence of new
types of electron degrees of freedom, namely, the pseudospin,
related to the distribution of the wave function over the
carbon atoms belonging to the different triangular sublattices
composing the graphene hexagonal lattice, and the presence of
two inequivalent electronic valleys, usually labeled as K and
K ′, in the vicinity of the gapless points of the energy spectrum
of graphene.

Recent papers studied the scattering of electrons by
edges4 and defects5 in graphene, both theoretically6 and
experimentally.7 Armchair and zigzag are the two types of
edges which are most frequently considered in the study of
graphene ribbons, although other types of terminations exist
due to edge reconstruction, which has been demonstrated
both theoretically8 and experimentally.9–11 Even so, the edge
reconstruction effect strongly depends on how the nanoribbon
is made: Normally, it occurs when the technique used to
fabricate the nanoribbon is based on a mechanism that
drives the system to thermodynamic equilibrium. According
to the continuum (Dirac) model, armchair edges in finite
graphene samples lead to a boundary condition that mixes
the wave functions of K and K ′ valleys, whereas a zigzag
edge appears in the Dirac theory of graphene as a separate
boundary condition for the wave functions of each valley.12,13

This suggests that electrons reflected by a graphene edge
would exhibit intervalley scattering only in the armchair case,
whereas reflection by a zigzag edge would produce scattering
inside the same Dirac valley. This prediction was confirmed by
recent experiments,14 where intervalley scattering by armchair
edges was even shown to be very robust in the presence of
defects. The inter- and intravalley scattering possibilities are
schematically illustrated in Fig. 1(a), which shows K and K ′
Dirac cones in the reciprocal space of graphene.

Besides its singular electronic properties, graphene also
exhibits interesting mechanical properties, as it can support

strong elastic stretch. This provides us with the new possibility
to tune the electron properties in graphene through strain
engineering.15–25 In fact, it has been demonstrated recently
that electrons in a strained graphene lattice behave as if they
were under an external magnetic field, which points towards
opposite directions in the K and K ′ valleys, so that the time
reversal symmetry of the system as a whole is preserved.26

Such fields were experimentally observed recently, when
measurements of the energy states in a graphene bubble
revealed a Landau-level-like structure corresponding to an
external magnetic field of ≈300 T.27 By designing nonuniform
strain fields in a graphene sheet, one is able to produce a
uniform pseudomagnetic field for electrons.28

The aim of this paper is twofold. We use wave-packet
dynamics calculations (i) to investigate electron reflection
by armchair and zigzag edges in a finite graphene sample,
assumed to be made by cutting a graphene monolayer, such
that no edge reconstruction is expected to occur at room
temperature, where our results demonstrate the possibilities of
inter- and intravalley scattering, depending on the type of edge,
and (ii) to study the influence of an external magnetic field and
a nonuniform strain distribution on the electron trajectories in
these systems. We compare the features observed for electrons
under a perpendicular external magnetic field with those seen
with a pseudomagnetic field. Figure 1(b) shows a sketch of the
graphene flake considered in our calculations, where the open
(green) circles illustrate the unstrained sample and the closed
(black) circles illustrate the strained one. Such a nonuniform
strain field was suggested by Guinea et al.28 and was shown
to exhibit an almost uniform pseudomagnetic field.

All the calculations were done within the tight-binding
description of graphene, using the time-evolution method
developed in Ref. 29. As we are not restricting ourselves
to a single Dirac cone in our model, the scattering between
Dirac cones by armchair edges will appear naturally. Notice
that Fig. 1(b) is just an illustrative scheme of our system,
where the number of atoms was reduced in order to help
its visualization. Besides, the sample shown in Fig. 1(b) is a
ribbon, which improves the visualization of the strained case.
However, the actual flake considered in our calculations has
1801 × 2000 atoms, which looks more like a rectangle, rather
than a ribbon, and corresponds to a flake with dimensions of
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FIG. 1. (Color online) (a) Dirac cones of graphene, along with
an illustrative scheme of the inter- (green circles) and intra-(gray
circles) valley scattering. (b) Sketch of the strained graphene sample
considered in this work, where the (open green) full black circles
represent the (un)strained case. The upper boundary is set as the y =
0 axis for convenience.

about 426 × 221 nm2. Such a large flake is necessary to isolate
each reflection of the wave packet on a single edge, as we need
to consider a large packet in order to avoid dispersion.3,29,30

II. EDGE-DEPENDENT SCATTERING

Let us first analyze the wave-packet reflection by zigzag and
armchair edges in a plain graphene sample, i.e., in the absence
of magnetic fields and strain. The initial wave packet �(x,y) is
taken as a circularly symmetric Gaussian distribution of width
d, multiplied by a plane wave with wave vector �k = (kx,ky)
and a pseudospinor σ = (A,B)T :

�(�r) = 1

d
√

2π

(
A

B

)

× exp

[
− (x − x0)2 + (y − y0)2

2d2
+ i�k · �r

]
. (1)

The pseudospinor in our model is simulated by defining
a multiplication factor in the wave function, which assumes
different values for sites belonging to the A and B sublattices.
Notice that for low-energy electrons in graphene, the tight-
binding Hamiltonian can be approximated as H = vFh̄�k · �σ ,
where vF is the Fermi velocity, so that the propagation
velocity vector in the Heisenberg picture is given by d �x/dt =
−[�x,H ]i/h̄ = vF �σ . Hence, the pseudospin polarization of
the wave packet plays an important role in defining the
direction of propagation. As the upper and right edges of
the flake are of armchair and zigzag type, respectively, we
consider σ = (1,i)T , i.e., propagation in the y direction, in
order to observe wave-packet scattering on the upper armchair
edge, and σ = (1,1)T , i.e., propagation in the x direction, for
scattering on the right zigzag edge. The initial wave vector �k
is taken in the vicinity of the Dirac point �K = (0,4π/3

√
3a),

where a = 1.42 Å is the interatomic distance. At each time
step, we calculate the average values 〈x〉 = ∫ ∞

−∞ x|�|2dxdy

and 〈y〉 = ∫ ∞
−∞ y|�|2dxdy, in order to track the wave-packet

trajectory in real space. Besides, a fast Fourier transform (FFT)
of the wave packet is taken at each time step, in order to track
its scattering in reciprocal space.

FIG. 2. (Color online) Average position of a Gaussian wave
packet of width d = 300 Å in an unstrained graphene flake, in the
absence of external magnetic fields, as a function of time. (a) Hori-
zontal propagation of a wave packet with �k = (0.03 Å −1,4π/3

√
3a),

and its consequent reflection by a zigzag edge. In this case the origin
of the system is shifted, so that the right zigzag edge is set as the
x = 0 axis. The wave packet starts at (x0,y0) = (−600 Å ,−600 Å ),
and exhibits also a slow drag towards the upper edge, due to
Zitterbewegung effects. (b) Vertical propagation of a wave packet
with �k = (0,4π/3

√
3a + 0.02 Å −1), starting at (0,−600 Å ), exhibit-

ing reflection by the upper armchair border. In this case, the sample
is not shifted; i.e., the upper edge is at the y = 0 axis, as sketched in
Fig. 1(b).

The average positions 〈x〉 (black solid) and 〈y〉 (red dashed)
are shown in Fig. 2 as a function of time, for a wave packet
propagating in the x (y) direction, towards the right zigzag
(upper armchair) edge of the sample, and being reflected by
this edge back to its initial position. Figures 2(a) and 2(b)
correspond to zigzag and armchair reflections, respectively.
The wave packet starts at 600 Å from the sample edge
and reaches the edge at t ≈ 70 fs in both cases. Due to the
finite width of the packet (d = 300 Å ), its center of mass
never reaches the border,29 so that 〈x〉 or 〈y〉 start to exhibit
backscattering when they are still ≈150 Å far from the edge.
Notice that the motion in the y direction shown in Fig. 2(b) is
perfectly vertical; i.e., 〈x〉 = 0 during the whole propagation.
However, this is not the case for propagation in the x direction
as apparent in Fig. 2(a), which is not perfectly horizontal;
i.e., 〈y〉 does not stay the same, as the wave packet slowly
drags towards larger y during propagation. This effect is a
manifestation of the Zitterbewegung, as discussed in detail in
Ref. 29. Although we did not manage to construct a wave
packet that propagates perfectly horizontal, avoiding such a
vertical drag, this effect does not interfere in our results and
conclusions, as our analysis of scattering on the zigzag edge
depends only on the horizontal component of motion.

Once we know the instant when the wave packet is reflected
by the graphene edge in real space, at that moment we
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FIG. 3. (Color online) Time evolution of the wave packet in
reciprocal space corresponding to the situations shown in Fig. 2.
(a) Illustrative scheme of the lines in reciprocal space along
which Fourier transforms of the wave functions are taken. For the
propagation in the horizontal direction [see Fig. 2(a)], we consider
�k = (0.03 Å −1,4π/3

√
3a). The time evolution of the wave function

along the (i)-(ii) line of reciprocal space is shown in (b) as contour
plots. For vertical propagation [see Fig. 2(b)], we consider �k =
(0,4π/3

√
3a + 0.02 Å −1). The time evolution of the wave function

along the (iii)-(iv) line of reciprocal space is shown as contour plots
in (c) and (d), corresponding to different ranges of kiii−iv

y .

analyze what happens in reciprocal space. Figure 3(a) shows
the lines (red dashed) in reciprocal space along which we
will take the wave functions. The contour plots in Fig. 3(b)
illustrate the wave function along the horizontal line (i)-(ii)
depicted in Fig. 3(a) in reciprocal space, as time elapses,
in the case of x-direction propagation and, consequently,
zigzag edge reflection. For such a propagation direction, we
assumed the initial wave vector as �k = (0.03 Å −1,4π/3

√
3a).

Therefore, the initial wave packet (at t = 0) has a peak around
ki−ii
x = 0.03 Å −1. This peak is conserved until the wave

packet starts to be reflected by the right zigzag edge, when
interference patterns start to show up. At ≈70 fs, a peak at
ki−ii
x = −0.03 Å −1 starts to appear, while the former peak at

ki−ii
x = 0.03 Å −1 smoothly decays. This is indeed the instant

when the wave packet is reflected by the zigzag edge in
real space, as shown in Fig. 2(a). As time elapses, the wave
packet ends up only around ki−ii

x = −0.03 Å −1. This is direct
evidence of intravalley scattering as schematically illustrated
in Fig. 1(a).

Figures 3(c) and 3(d) show the wave function in reciprocal
space taken along the vertical line (iii)-(iv) depicted in Fig. 3(a)
as time elapses, for vertical propagation and, consequently,
armchair edge reflection. For propagation in the y direction,
we consider �k = (0,4π/3

√
3a + 0.02 Å −1), so that the wave

packet initially exhibits a peak around ≈1.723 Å −1, as
shown in Fig. 3(c). This peak is preserved up to t ≈ 70 fs,
when the wave packet is scattered by the upper armchair
edge [see Fig. 2(b)] and the amplitude of the peak starts to

decrease. Meanwhile, another peak appears around kiii−iv
y ≈

−1.723 Å −1, which is located in the K ′ valley, as shown
in Fig. 1(a). The intervalley scattering situation is illustrated
by the green circles in Fig. 1(a) which is clearly observed in
reciprocal space.

III. SKIPPING ORBITS

Let us now investigate the trajectory of a wave packet in
the presence of an external magnetic field, while it undergoes
reflection at the edges of our rectangular graphene flake.
We consider the same conditions as in Fig. 2(a); i.e., the
wave packet in this case moves to the right, being thus
pushed to the upper armchair edge by the Lorentz force due
to the perpendicular magnetic field. The trajectory drawn
by �r = (〈x〉,〈y〉) for such a packet in the xy plane after a
t = 2000 fs propagation, under a ≈5 T field, is shown in
Fig. 4(a), where skipping orbits are clearly observed,31 coming
from the successive reflections at the borders of the system,
followed by cyclotronic semicircles, as one would expect from
such a scattering problem. The arrows indicate the direction of
propagation, and the edges of the figure are set to be exactly
at the position of the edges of the graphene flake. In order
to help their analysis, the trajectories were divided into four
regions, labeled from (I) to (V). Figure 4(b) shows 〈x〉 and 〈y〉
separately as a function of time, where one verifies, e.g., the
attachment of the packet to the upper edge [〈y〉 close to y = 0
in region (I)], followed by a decrease in 〈y〉, when it attaches to
the right edge [〈x〉 close to x = 2100 Å , in region (II)], and its

FIG. 4. (Color online) Trajectories drawn by 〈x〉 and 〈y〉 for
a Gaussian wave packet in the presence of an external magnetic
field ≈5 T, propagating close to the edges in a rectangular graphene
flake, within a t = 2000 fs propagation time. The arrows indicate the
direction of propagation. Different values of the initial wave-packet
width d are considered. The edges of this panel are placed at the
positions of the actual edges of the sample. (b) Average values of
the wave-packet position 〈x〉 and 〈y〉 as a function of time for the
trajectories drawn in (a). Different parts of the trajectory in (a) were
labeled from (I) to (V), and the time intervals where they occur are
delimited by the vertical lines in (b).
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further attachment to the bottom edge of the sample [〈y〉 close
to y = −2100 Å in region (III)]. As previously mentioned, due
to the finiteness of the packet width, the trajectory as described
by (〈x〉,〈y〉) does not reach the edges of the system. Besides,
the wave packet disperses as time elapses, which distorts the
trajectory as compared to the one obtained by classical ballistic
motion.29 Even so, the main conclusion one draws from this
result is quite clear: As well as in ordinary systems with
confined Schrödinger particles,32 electrons in graphene under
external magnetic fields exhibit a skipping orbit pattern when
propagating close to the edges of the sample. We performed
calculations for different wave-packet widths d = 100 Å and
300 Å , and the results lead to the same qualitative conclusion,
differing only by the distance the wave packet may reach the
edge. There is, however, an important difference between these
skipping orbits and those in ordinary Schrödinger systems;
namely, the wave packet in this case may scatter not only
between momentum states with opposite signs within the same
valley, as usual, but they can also scatter from one valley to
another, depending on the type of edge, as we demonstrated in
Fig. 3. Nevertheless, the effect of an external magnetic field on
electron states belonging to both valleys is the same; therefore,
there is no detectable manifestation of intervalley scattering in
this situation. This is not the case when, instead of an external
magnetic field, we consider a strain-induced pseudomagnetic
field, as we will demonstrate in what follows.

For a circularly strained graphene flake, like that sketched
in Fig. 1(b), electrons in the sample behave as if they were in
an almost uniform magnetic field perpendicular to the plane. In
order to produce such a strain, our 1801 × 2000 atoms sample
is distorted into a semicircle of radius R = 104 Å , leading to a
pseudomagnetic field ≈5 T, i.e., close to the value considered
for the external magnetic field in Fig. 4. The presence of such
a pseudomagnetic field when electrons move close to the edge
are expected to result in skipping orbits, similar to those in
Fig. 4. Surprisingly, Fig. 5(a) shows this is not really the case:
After performing a semicircular trajectory due to the Lorentz
force coming from the pseudomagnetic field, the packet, which
started in the K valley, is reflected by the upper armchair edge
and scatters to the K ′ valley, where the pseudomagnetic field
points in the opposite direction. The semicircular trajectory
now travels in the opposite direction until the packet reaches
the edge again, being scattered back to its former Dirac cone
at the K valley. This procedure occurs several times until the
packet is so strongly dispersed that it, eventually, does not
reach any of the edges, and performs only circular trajectories
in the middle of the graphene flake. The series of reflections by
the armchair border obtained in the strained case suggests the
existence of a quasibound state at this edge, which is clearly
seen by the time dependence of the average coordinates 〈x〉
and 〈y〉, shown in Fig. 5(b). As time elapses, both 〈x〉 and 〈y〉
simply oscillate around x = 0 and close to the upper border of
the sample, respectively. Notice that differently from Fig. 4(a),
the lateral and bottom borders of the panel in Fig. 5(a) do not
match the edges of the sample, in order to help the visualization
of the trajectory, which in this case is localized in a small region
of the sample. One can also observe that the results for different
wave-packet widths d are qualitatively the same, differing
only by the amplitudes of the 〈x〉 and 〈y〉 oscillations in
time.

FIG. 5. (Color online) (a) Trajectories drawn by 〈x〉 and 〈y〉 for
a t = 2000 fs time evolution of a wave packet, which propagates
close to the upper (armchair) border of a bent rectangular graphene
sample, for two values of wave-packet width d . The radius of the
circular distortion is R = 104 Å , corresponding to an almost uniform
≈5 T pseudomagnetic field. The horizontal dashed line represents
the upper edge of the sample. (b) Average values of the wave-packet
position 〈x〉 and 〈y〉 as a function of time for the trajectories drawn
in (a).

The sequence of scatterings between K and K ′ valleys
suggested by the trajectories observed in Fig. 5 is confirmed
by a direct observation of the wave function in reciprocal
space. This is illustrated by Fig. 6, which shows the Fourier-
transformed wave function (contour plots) as a function of
the vertical component of the wave vector ky as function
of time t , similar to Figs. 3(c) and 3(d). Since the initial
wave packet in this case is at �k = (−0.06 Å −1,4π/3

√
3a),

in the vicinity of the K point, the ky in Fig. 6(a) is taken
for a fixed kx = −0.06 Å −1, i.e., in the center of the initial
wave packet. One clearly sees that the peak of the wave

FIG. 6. (Color online) Contour plots of the time evolution of the
wave packet in reciprocal space corresponding to the propagation
shown in Fig. 5, i.e., for a strained graphene sample. The Fourier
transform of the wave packet is taken in the vicinity of the (a) K and
(b) K ′ points of the reciprocal space illustrated in Fig. 3(a), along the
kx = −0.06 Å −1 (kx = 0.045 Å −1) vertical axis for K (K ′).
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packet in reciprocal space oscillates between the K (a) and K ′
(b) regions in Fig. 6 as time elapses, as a consequence of the
successive intervalley scatterings by the upper armchair edge
of the system, as observed in Fig. 5. Indeed, the first peak
in the K ′ cone [Fig. 6(b)], for instance, starts to appear at
t ≈ 200 fs, which is the same time when 〈x〉 and 〈y〉 start to
decrease in Fig. 5(b), after the wave packet is scattered by the
edge for the first time. It is important to point out that we had
to take the kx = 0.045 Å −1 vertical axis in order to observe
the K ′ propagation in Fig. 6(b), instead of the kx = 0.06 Å −1

that would be expected from the value of the wave vector in
our initial wave packet. In fact, one cannot expect that the K

and K ′ points in the strained case remain vertically aligned in
reciprocal space, as illustrated in Fig. 3(a), due to the distortion
of the Dirac cones caused by the strain.27 Also, we observe
that the scattered wave packets are no longer Gaussian, as they
start to exhibit interference patterns due to the scattering by
the edges. Even so, the conclusions drawn from the results
in Fig. 6 are not affected by this fact, while Fig. 6 gives us
a clear demonstration that the successive K to K ′ scatterings
are indeed strongly related to the nonpropagating edge states
found for the strained case in Fig. 5.

IV. PROBABILITY DENSITY CURRENT CALCULATIONS

The trajectories illustrated in Figs. 4 and 5 have a direct
effect on the probability density currents, which are numer-
ically calculated based on the method developed in Ref. 33.
Since we can define the probability current j in terms of the
continuity equation, then the discrete current centered on site
n can be written as

jn − jn+1 = a
∂

∂t
ρn,n, (2)

where ρn,n = 〈n|ρ̂|n〉 are the matrix elements of the density
matrix operator ρ̂ = |�〉〈�|, and the time derivative is
determined by the equation of motion for ρ̂,

∂

∂t
ρnn = i

h̄

∑
m

(�n�
∗
mHmn − Hnm�m�∗

n ), (3)

where �n = 〈n|�〉. We will limit ourselves to the case of
nearest-neighbor interaction, i.e., Hn,m = 0 when |m − n| >

1, from which we obtain

∂

∂t
ρnn = i

h̄
[(�n�

∗
n+1Hn+1,n − Hn,n+1�n+1�

∗
n )]

+ i

h̄
[�n�

∗
n−1Hn−1,n − Hn,n−1�n−1�

∗
n ], (4)

which is easily rewritten in the form

∂

∂t
ρnn = −2

h̄

[�n�

∗
n+1Hn+1,n] + 2

h̄

[�n−1�

∗
nHn,n−1].

(5)

By comparing Eqs. (2) and (5), one easily identifies the local
current in n as

jn = 2a

h̄

[�∗

n�n−1Hn,n−1]. (6)

Notice that Eq. (6) was developed without taking into
account any specific lattice and the presence of magnetic

fields. However, a generalization to an arbitrary discrete lattice
is straightforward, and the presence of a magnetic field is
included simply by the Peierls substitution of the hopping
parameters.34 As graphene is a hexagonal lattice, the current
components in the x and y directions have different forms and
are site dependent. Defining the sites location through their
line (n) and column (m) positions in the lattice (see Ref. 29),
one obtains

jx(n,m) = ±a

h̄
{2
[�n,m�∗

n,m±1τn,m±1]

−
[�n,m�∗
n−1,mτn−1,m] − 
[�n,m�∗

n+1,mτn+1,m]}
(7)

and

jy(n,m) =
√

3a

h̄
{
[�n,m�∗

n+1,mτn+1,m]

−
[�n,m�∗
n−1,mτn−1,m]}, (8)

where the ∓ sign in jx will be positive (negative) if the
(n,m) site belongs to the sublattice A (B), and τn,m is the
hopping parameter which, in the presence of a magnetic
field, includes an additional phase according to the Peierls
substitution τn,m → τn,m exp [i e

h̄

∫ n

m
�A · d�l], where �A is the

vector potential describing the magnetic field.
The probability density currents calculated by Eq. (6) are

integrated in space and plotted as a function of time in Fig. 7

FIG. 7. (Color online) Integrated probability density currents as a
function of time for the situations proposed in Figs. 4 and 5, namely,
(a) for an unstrained graphene sample in the presence of an external
5 T magnetic field, and (b) in a circularly bent graphene sample,
which produces an almost uniform ≈5 T pseudomagnetic field. The
curves (symbols) represent the component of the current in the x (y)
direction, i.e., jx (jy). Two different values of wave-packet width are
considered: d = 100 Å (black solid, circles) and 300 Å (red dashed,
triangles). The regions delimited in (a) are the same as in Fig. 4.
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for the situations proposed in Figs. 4 and 5, i.e., (a) in the
presence of an external 5 T magnetic field, and (b) in a
strained graphene sample, which produces an almost uniform
≈5 T pseudomagnetic field. As in the other results discussed
previously, the results obtained for the two different values of
wave-packet width considered in this case, d = 100 Å (black
solid, circles) and d = 300 Å (red dashed, triangles), exhibit
similar qualitative features, differing only in a quantitative way.
In Fig. 7(a), for an external field, one observes a total current
flow in the x direction oscillating around a positive value in
the region (I), whereas jy oscillates around zero in this region.
This is a manifestation of the propagation of the wave packet
through the upper edge of the sample, by means of skipping
orbits, as illustrated in Fig. 4(a). What follows can also be
understood by analyzing Fig. 4(a): In regions (II) and (IV)
[(III) and (V)], where the wave packet propagates along the
vertical (horizontal) edges, the component of the current in the
y (x) direction oscillates around a nonzero value, indicating
an electron propagation through the sample by the skipping
orbits mechanism. This is not the case when we consider
a strain-induced pseudomagnetic field: Fig. 7(b) shows that
both jx and jy always oscillate around zero, confirming that
there is no net current in the system and that the skipping
orbits near the armchair edge in this case are nonpropagating
states.

The results found in our work have observable conse-
quences in experiments. For example, the edge propagation
of electrons through skipping orbits in an ordinary system
under an external magnetic field plays an important role in
electron transport in the direction parallel to the edge.32 Our
results demonstrate that these skipping orbits are still present
in a graphene ribbon under an external magnetic field, but they
are not observed in the case of pseudomagnetic fields in the
direction parallel to an armchair border of graphene. This is
a clear example that the pseudomagnetic field has different
consequences as compared to a real magnetic field. Therefore,
in a strained armchair graphene ribbon, edge electrons should
not propagate along the ribbon, so that the transport in these
systems must be dominated only by electrons propagating far
from the edge. Moreover, the nonpropagating state found at the
armchair edge of a strained sample is a consequence of periodic

intervalley scattering processes, and this type of scattering has
an important effect on Raman spectroscopy.35 We would thus
expect that the different electron dynamics near the armchair
edge of strained graphene as compared to the unstrained case
should affect the double resonance process responsible for the
defect related Raman peak (D band), causing changes on both
its intensity and lineshape.

V. CONCLUSIONS

In summary, we investigated the reflection of a wave packet
on zigzag and armchair edges of a graphene ribbon. Our
results demonstrate the scattering of the wave packet from
K to K ′ Dirac cones in the case of armchair edges, whereas
scattering from positive to negative average momentum inside
the same cone is observed in the zigzag case, which is in
agreement with predictions from mean field (Dirac) theory
of graphene and with recent experimental results.14 In the
presence of an external magnetic field, skipping orbits are
observed. However, for a strain-induced pseudomagnetic field,
our numerical results demonstrate that the incoming and
scattered wave packets perform orbits in opposite directions
in the armchair case. This effect is easy to understand if one
considers the combination between two events, both already
predicted by the Dirac theory of graphene: (i) the K to K ′
scattering by armchair edges and (ii) the opposite sign of the
pseudomagnetic field in the different cones. This result points
directly to the possibility of observing nonpropagating edge
states in an armchair-terminated strained graphene sample
under pseudomagnetic fields, which is completely different
from the external magnetic fields case, where the skipping orbit
states are always propagating. The effects predicted by our
theoretical work are expected to have important consequences
in future experiments on strained graphene samples.
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