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Application of optical beams to electrons in graphene
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The technique of beam optics is applied to the description of the wave function of Dirac electrons. This
approach is illustrated by considering electron transmission through simple nonhomogeneous structures, such as
flat and bent p-n junctions and superlattices. We found that a convex p-n junction compresses the beam waist,
while a concave interface widens it without loosing its focusing properties. At a flat p-n junction the waist of
the transmitted Gaussian beam can be narrowed or widened, depending on the angle of incidence. A general
condition is derived for the occurrence of beam collimation in a superlattice which is less stringent than previous
discussed.
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I. INTRODUCTION

Progress in nanometer technology has triggered a broad
activity in low-dimensional quantum systems.1 Starting with
two-dimensional (2D) electron systems at the interface of
two materials several decades ago, it has shifted recently to
2D materials, for example, graphene,2,3 and 2D topological
insulators.4 The most intriguing feature of these systems
is their similarity to ultrarelativistic electrons and positrons
obeying the Dirac equation.5

The possibility of performing experiments at very low
temperatures with pure materials stimulated investigations
of sophisticated quantum properties of electron systems,
especially the peculiarities of the electron wave functions,
their control, and the search for analogies with electromagnetic
waves. For instance, the meta-material character of p-n struc-
tures in graphene6 was pointed out, and focusing of electronic
waves was proposed.7,8 The meta-material properties of the
above-mentioned p-n structures resulted in the expectancy
of controlling the electron wave function, in particular, the
width of electron beams by means of a superlattice. This
behavior is known as collimation. Recently it was shown that
superlattices on graphene can be fabricated in various ways9–12

which induce large theoretical activity in this field, such as the
investigation of electron focusing,13–15 collimation of electrons
and photons,16–21 and interference22 in a 2D electron gas.

Qualitatively, the meta-material properties of p-n junc-
tions in graphene can be understood by inspecting classical
trajectories or using ray optics, as it is called for the case
of electromagnetic phenomena. A quantitative description
of their properties can be achieved by laborious numerical
simulation23,24 of the Schrödinger and Dirac equations (similar
to the Maxwell equations for describing electromagnetic
phenomena).

In photonics an intermediate approach based on beam
optics25 has been widely used, in particular, in laser physics.
Beam optics is based on the simplicity of ray optics, but with
the inclusion of essential phenomena such as diffraction and
interference. Compared to mechanics it corresponds to the
so-called quasiclassical approach.

The aim of this work is to transfer the technique of Gaussian
beams developed in optics to the description of Dirac electron
wave functions and to illustrate their application in electron

propagation through the most simple nonhomogeneous struc-
tures, such as flat and bent p-n junctions and superlattices. The
main advantage of the present approach compared with the
previous calculations is its simplicity and the fact that most of
the results can be obtained analytically.

The paper is organized as follows. In Sec. II the main
properties of Gaussian beams in optics are reviewed. Gaussian
beams for Dirac electrons are introduced in Sec. III. Their
application to beam focusing by a bent p-n junction is
discussed in Sec. IV. Section V is devoted to the reflection
of oblique beams, and in Sec. VI beam collimation by a
superlattice is discussed. In the last section our conclusions
are presented.

II. GAUSSIAN BEAMS IN OPTICS

We first review the basic properties of Gaussian beams in
optics, which are essential when solving the Dirac equation
for the corresponding electron beams in graphene. Following
Saleh’s textbook,25 Gaussian beams are known as solutions of
the three-dimensional (3D) Helmholtz equation,

(∇2 + k2)u(r) = 0, (1)

in the form of paraxial waves

u(r) = A(r)eikx (2)

propagating along the x axis. The envelope A(r) is assumed
to be a slowly varying function over distances of the order of
the wavelength λ = 2π/k. This envelope satisfies the paraxial
Helmholtz equation(

∇2
⊥ + 2ik

∂

∂x

)
A(r) = 0, (3)

where ∇2
⊥ = ∂2/∂y2 + ∂2/∂z2 stands for the 2D Laplacian in

the plane perpendicular to the direction of beam propagation.
Inspecting terms in the above equation and comparing them
with the terms in Eq. (1), we conclude that the validity of the
paraxial approximation can be formally expressed as

k−1∂xA = γA � A, ∂2
⊥A ∼ k∂xA ∼ γ k2A. (4)

So in the paraxial approximation, terms of order γ are taken
into account while terms of order γ 2 are omitted, or only the
leading terms are taken into account.
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FIG. 1. (Color online) Illustration of a Gaussian beam with its
important parameters.

Making use of the analogy with the Green’s function of the
diffusion equation for imaginary time (e.g., t → ix/2k), the
solution of Eq. (3) can be presented as

A(r) = A

x − w
exp

{
ikρ2

2(x − w)

}
, (5)

where ρ =
√

y2 + z2 is the radial coordinate in the yz plane,
and

w = u + iv (6)

is some complex shift of the argument, which can be included
due to the translational symmetry of Eq. (3). The above
complex constant allows us to obtain a finite beam solution
in the yz plane.

Usually the denominator in the argument of the exponent
is decomposed as follows:

1

x − w
= 1

x − u − iv
= x − u

(x − u)2 + v2
+ iv

(x − u)2 + v2

= 1

R(x − u)
+ 2i

kW 2(x − u)
, (7)

where the symbol W (x) stands for the beam radius and R(x) for
the wave-front radius of curvature. The smallest beam radius,

W0 = W (0) =
√

2v

k
, (8)

is called the beam waist, while the parameter 2v characterizes
the depth of focus and is called the confocal parameter. The
parameter u is just the position of the waist on the x axis. All
these quantities are shown in Fig. 1. The beam radius W (x) is
shown by the red curve. In the limiting case of x → ±∞ it
approaches the two blue lines indicating the angular divergence
of the beam:

θ0 = 2

kW0
. (9)

Taking into account condition (4) it is easy to conclude that
the paraxial approximation is valid when

∂A

∂x
� kA or θ0 � 1, (10)

namely, in the case of weakly diverging beams.
The intensity of the beam can be calculated in a standard

way as

I (ρ,x) = |u(r)|2 = I0

(x − u)2 + v2
exp

[
− kρ2v

(x − u)2 + v2

]

= I0

[
W0

W 2(x − u)

]2

exp

[
− 2ρ2

W 2(x − u)

]
, (11)

where I0 = |A|2/v2 characterizes the total optical power
(πW 2

0 I0/2) of the beam. Equation (11) actually justifies the
name of the beam’s radius W (x).

All these expressions can be straightforwardly applied to 3D
electron beams that are described by the Schrödinger equation.
For free electrons this equation coincides with the Helmholtz
equation (1) if one takes into account the definition of the
electron energy, namely, E = h̄2k2/2.

III. GAUSSIAN BEAMS APPLIED TO THE DIRAC
EQUATION

Now we turn to the Dirac-Weyl equation, which is used in
a continuum description of electrons and holes in graphene or
for electrons in topological insulators. In the stationary case
this equation can be presented in the form of a Schrödinger
equation,

(H − E)�(r) = 0, (12)

with the following dimensionless 2D Hamiltonian:

H = −i

(
0 ∂/∂x − i∂/∂y

∂/∂x + i∂/∂y 0

)
. (13)

All dimensions can be excluded, say, measuring distances
in lattice constant a0 units, time in h̄/a0 units, and energy
in h̄vF /a0 units (here vF is the Fermi velocity—the single
parameter characterizing the Dirac Hamiltonian for particles
with zero rest mass).

Equation (12) has to be satisfied by the two-component
eigenfunction,

�(r) = �(x,y) =
(

F (r)

G(r)

)
, (14)

where the components obey the following set of equations:(
∂

∂x
− i

∂

∂y

)
G(r) = iEF (r), (15a)(

∂

∂x
+ i

∂

∂y

)
F (r) = iEG(r). (15b)

Substituting the component G(r) (expressed from the
second equation) into the first one, we arrive at the equation
for the single F (r) component,(

∂2

∂x2
+ ∂2

∂y2
+ E2

)
F (r) = 0, (16)

which coincides with the 2D Helmholtz equation, (1), or the
Schrödinger equation for standard electrons, if we take into
account the electron and hole energy dependence

E = ±k (17)

in graphene.
The different dimensionality of the problem changes the

paraxial equation slightly for the envelope functions intro-
duced as

F (r) = eikxf (r), G(r) = eikxg(r) (18)
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for the beam propagating along the x axis. Now instead of
Eq. (3) we have to write down the following equation for the
first envelope function component:(

∂2

∂y2
+ 2ik

∂

∂x

)
f (r) = 0. (19)

The solution of Eq. (19), in analogy with the Gaussian beam
in optics, Eq. (5), can be presented as

f (r) = A√
x − w

exp

{
iky2

2(x − w)

}
. (20)

We see that the exponents that define the main properties of the
Gaussian beam are the same in both Eq. (20) and Eq. (5). Only
the prefactors are different, which is caused by the peculiarities
of the Green’s function of the 1D diffusion equation.

The second envelope function component can be obtained
using Eqs. (15b) and (18). It reads

g = − i

E
e−ikx

(
∂

∂x
+ i

∂

∂y

)
eikxf

= − i

E
(ik + ∂x + i∂y)f ≈ k

E
f. (21)

We restrict our consideration by taking into account only
the last approximate expression or including just the leading
term, which, according to Eq. (4), is the essence of the
paraxial approximation. Thus, the Gaussian beam propagating
along the x axis, being the approximate solution of the Dirac
equation, can be presented as

�(r) = Aeikx

√
x − w

(
k

E

)
exp

{
iky2

2(x − w)

}
. (22)

If the beam propagates in some other direction, its wave
function can be obtained from Eq. (22) by properly rotating
the (x,y) coordinates and the spinor part of the wave function
as well.

IV. TRANSMISSION OF AN ELECTRON BEAM THROUGH
A BENT POTENTIAL STEP

For illustrative purposes we use the expressions obtained
in the previous section for Dirac electron Gaussian beams and
apply them to the penetration of these electrons into a bent
electric potential step in graphene. We assume that the xy

plane is divided into two parts by the circular interface

(x − R0)2 + y2 = R2
0 . (23)

In the vicinity of a narrow Gaussian beam propagating along
the x axis, it can be replaced by the parabolic curve

x = y2

2R0
, (24)

where R0 stands for the radius of the bent potential interface.
We assume that the homogeneous electric potential of strength
V is applied on the right side of this interface, while it is 0
on the left-hand side. This barrier is shown schematically in
Fig. 2 together with the band structure of graphene.

E

electronselectrons

holesholes

1 2
x

0

V

E k=+

E k=-

34

I

II

FIG. 2. (Color online) Potential barrier and the band structure of
graphene.

We assume that the incident electron beam with energy
E = ki > 0,

�i(r) = Aie
ikix

√
x − wi

(
1

1

)
exp

{
ikiy

2

2(x − wi)

}
, (25)

is coming from the left side in region I . It corresponds to point
1, indicated by the filled red circle in Fig. 2. So, in the case
of positive R0 the interface, Eq. (24), corresponds to a convex
lens.

We assume that the energy of the incident electron is lower
than the potential height (E < V ). Due to conservation of
energy and chirality, the electron in the barrier corresponds to
point 2 (filled violet circle) in the energy spectrum shown in
Fig. 2. Points 3 and 4, shown by open circles, do not contribute
in the paraxial approximation due to the above-mentioned
conservation of chirality.

So, the wave function on the right side of barrier II reads

�t (r) = Ate
ikt x

√
x − wt

(
1

1

)
exp

{
ikty

2

2(x − wt )

}
, (26)

where

kt = E − V < 0. (27)

The incident, Eq. (25), and transmitted, Eq. (26), beams
have to satisfy the boundary condition at the interface, Eq. (24),
which reads

Aie
ikiy

2/2R0√
y2/2R0 − wi

exp

{
ikiy

2

2(y2/2R0 − wi)

}
(28)

= Ate
ikt y

2/2R0√
y2/2R0 − wt

exp

{
ikty

2

2(y2/2R0 − wt )

}
.

Taking into account the weak divergence of the Gaussian beam
and assuming a large radius for the bent interface (R0 
 λ),
Eq. (28) can be simplified by neglecting the y2/2R0 terms
in comparison with the wi,t terms in the denominators. This
replaces Eq. (28) with the following equation:

Ai√−wi

exp{ikiy
2[1/2R0 − 1/2wi]}

(29)

= At√−wt

exp{ikty
2[1/2R0 − 1/2wt ]}.
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FIG. 3. (Color online) Beam penetration into the flat potential
step at x = 0 for E < V .

As this equation has to hold for any y value at the interface,
the following condition should be satisfied:

ki

(
1

R0
− 1

wi

)
= kt

(
1

R0
− 1

wt

)
. (30)

Note that this is the main equation for lenses and mirrors in
optics.

In the case of a flat interface (i.e., R0 = ∞), Eq. (30) reduces
to the more simple one,

ki/wi = kt/wt , (31)

or

wt = −κwi, κ = V − E

E
> 0. (32)

Consequently, the positions of the waist of the incident and
transmitted beams (ui and ut , respectively) have different signs
as illustrated in Fig. 3, where the radii of corresponding beams
are shown by solid red and blue curves.

It is remarkable that the flat interface does not influence the
radius of the waist. Indeed, according to Eqs. (8) and (31) we
have

W0t =
√

2vt

kt

=
√

2vi

ki

= W0i , (33)

while the focusing properties of this interface, namely, the
divergence of the beam according to Eq. (9), can be enlarged
as shown by

θ0t = 2

ktW0t

= ki

kt

θ0i = − 1

κ
θ0i (34)

when the energy of the incident electron approaches the top
of the barrier. Note that when the electron energy becomes
higher than the potential height, the interface loses its focusing
possibility because in this case κ < 0, and both beam waists
are on the same side of the interface. Now the beam diverges
after the penetration into the barrier as illustrated in Fig. 4.

One can change the waist of the beam in the barrier by
using a bent interface. In this case, assuming that the waists of
both beams are not close to the interface (i.e., |ui | 
 vi and
|ut | 
 vt ), we can rewrite Eq. (7) as

1

wi,t

≈ 1

ui,t

− ivi,t

u2
i,t

, (35)

and inserting it into Eq. (30) and separating its real and
imaginary parts, we obtain two equations,

ki

(
1

R0
− 1

ui

)
= kt

(
1

R0
− 1

ut

)
, (36a)

0 x

barrier Vno potential
W

ui ut

θi

θt W0

FIG. 4. (Color online) Diverging beam when penetrating the flat
potential step at x = 0 with E > V .

kivi

u2
i

= ktvt

u2
t

, (36b)

which characterize the transition of the Gaussian beam through
the bent interface.

Now using Eqs. (8) and (36b), the waist ratio becomes

W0t

W0i

=
√

kivt

ktvi

= kiut

ktui

. (37)

Using Eq. (36a) we can express the ratio ui/ut as

ui

ut

= ki

kt

[
1 −

(
1 − kt

ki

)
ui

R0

]
, (38)

and we obtain the following equation for the ratio of the beam
waists:

W0t

W0i

=
(

1 − V ui

ER0

)−1

. (39)

We see that in the case of a diverging beam coming from
the left side (ui < 0), the convex (R0 > 0) interface compress
the beam waist similarly to the action of a convex lens in
optics, while a concave interface (R0 < 0), in contrast, widens
it without affecting its focusing ability.

V. REFLECTION OF AN OBLIQUE BEAM

Now we consider a standard optics problem: reflection and
transmission of a beam obliquely incident on the interface
of two different media. The layout for the case of graphene
is shown in Fig. 5. In the right half-plane (yellow) there
is a barrier—the homogeneous electric potential of strength
V —while in the left half-plane the potential is taken to be
0. The vector ki indicates the direction of the incident beam
characterized by the incident angle θi . The simplest way to
construct the wave function that corresponds to that incident

0 x

y

θi

θi

θtθr

θr

ki

kr

kt

FIG. 5. (Color online) Reflection and transmission at an interface.
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beam is to use the coordinate system (xi,yi) rotated by the
angle θi , namely,

xi = x cos θi + y sin θi, (40a)

yi = −x sin θi + y cos θi, (40b)

in which the vector ki is located along the xi axis. Thus,
taking into account that the spinor has to be rotated as well
and denoting E = |ki |, we rewrite Eq. (25) as follows:

�i(r) = Aie
iExi

√
xi − wi

(
1

eiθi

)
exp

{
iEy2

i

2(xi − wi)

}
. (41)

In an analogous way, denoting the reflection angle by the
symbol θr and rotating coordinates by the angle π − θr in
Eq. (25), we obtain the wave function of the reflected beam:

�r (r) = Are
iExr

√
xr − wr

(
1

−e−iθr

)
exp

{
iEy2

r

2(xr − wr )

}
. (42)

The wave function of the transmitted beam is similar to
Eq. (41), where the index i has to be replaced by t , and the
energy E by the electron energy in the barrier E − V .

Now satisfying the boundary condition at the interface
(x = 0), we obtain the equation

eiEy sin θi

(
1

eiθi

)
Ai
i(E)√
y sin θi − wi

+ eiEy sin θr

(
1

−e−iθr

)
Ar
r (E)√
y sin θr − wr

= ei(E−V )y sin θt

(
1

eiθt

)
At
t (E − V )√

y sin θt − wt

, (43)

where the following short notation is used:


α(E) = exp

{
iEy2 cos2 θα

2(y sin θα − wα)

}
. (44)

Equation (43) has to be satisfied for any y value at the interface.
This implies that the arguments of the exponents that include
the coordinate y have to be equal. So, applying this procedure
to the first exponent in all three terms of Eq. (43), we obtain
the following equations:

E sin θi = E sin θr = (E − V ) sin θt . (45)

This is nothing other than Snell’s law:

θr = θi, sin θt = − 1

κ
sin θi . (46)

If E < V (κ > 0), we have a negative angle of refraction
(θt < 0) as in the case of a metamaterial.

To equate the arguments of the second exponent in each
of the three terms of Eq. (43) as given by Eq. (44) is hardly
possible due to the nontrivial y dependence of the numerator of
this expression and of the denominator as well. Therefore, we
have to invoke some approximations. For this purpose we draw
our attention to definition (6) and Eq. (7), from which it follows
that the term y sin θα , which actually does not exceed the beam
radius, competes with the term uα , which indicates the distance
from the interface to the beam’s waist. Consequently, if the

waist is not close to the interface, namely, if the above distance
uα is larger than the radius of the beam characterized by the
value vα , the term y sin θα can be neglected compared with the
shift wα . Making use of this approximation and equating the
arguments of the 
α(E)–type exponents in all three terms of
Eq. (43), we obtain the following equations:

E cos2 θi

wi

= E cos2 θr

wr

= (E − V ) cos2 θt

wt

, (47a)(
1

eiθi

)
Ai√−wi

+
(

1

−e−iθr

)
Ar√−wr

=
(

1

eiθt

)
At√−wt

.

(47b)

These equations completely solve the beam reflection
problem. Equation (47a) enables us to define wr and wt ,
namely, the basic characteristics of reflected and transmitted
beams:

wr = wi = −wt

κ

cos2 θi

cos2 θt

. (48)

The first equality indicates that the reflected beam has the same
characteristics as the incident one; actually the reflected beam
is a continuation of the incident one with the same divergence
rate. The second equality enables us to estimate the waist of
the transmitted beam. It reads

W 2
0t

W 2
0i

= − 1

κ

vt

vi

= cos2 θt

cos2 θi

, (49)

and consequently,
W0t

W0i

= cos θt

cos θi

. (50)

Thus the waist of the transmitted beam can be increased (or
decreased) compared with the incident beam, depending on
the angle of incidence.

And finally, Eq. (47b) enables us to evaluate the intensities
of the transmitted and reflected beams. This equation is
actually the same equation for homogeneous beams described
by the corresponding exponents (see, e.g., similar calculations
in Ref. 26) with a single exception, namely, the additional
factors wα , which actually take into account the change of the
beam waist during reflection or transmission.

VI. BEAM COLLIMATION IN A SUPERLATTICE

Using Eq. (31) that describes the transformation of the
main beam parameters when passing through the flat p-n-
interface it becomes now easy to trace the transmission of the
electron beam through the superlattice that is composed as a
periodic structure of the above interfaces. Such a superlattice is
schematically shown in Fig. 6. We assume that this superlattice

1 1

V
sd

b 2b2aa

FIG. 6. (Color online) Superlattice and an electron beam propa-
gating through it.
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consists of alternating n regions of length s (shown in white)
with zero potential and p regions (or barriers) of length d

(shown in yellow) with electric potential V . The radius of the
electron beam propagating perpendicular to these superlattice
layers is shown by solid red and blue curves in Fig. 6.
The corresponding dashed lines indicate the divergences of
various beam parts. The green dashed horizontal line shows
the position of the beam waist, which, according to Eq. (33),
maintains its value in the case of the considered flat interfaces.

As the waist value is conserved during electron transmission
through the interface indicated by the number n, the main
variables that characterize this transmission are an and bn,
which are the distances of incoming and outgoing beam waists
from that interface (see Fig. 6). According to Eq. (32) they are
related by

bn = −anκ and an = −bn/κ. (51)

The single important thing that must be taken into account is
that these relations have to be used in the coordinate system
attached to the considered interface. Thus, we can write the
following set of equations connecting the waist positions in
various superlattice layers:

bn = −κan, (52a)

an+1 − s = − 1

κ
(bn − d), (52b)

or

an+1 = an +
(

d

κ
− s

)
. (53)

The solution of this simple equation reads

an = a1 +
(

d

κ
− s

)
(n − 1). (54)

It is remarkable that Eq. (53) and its solution, Eq. (54), hold
even in the case where the waist positions are outside the layers
that contact the interface under consideration. Thus, it follows
from Eq. (54) that, in general, the distance of the beam waist
from the interface increases when n → ∞, and consequently,
the electron beam diverges. The single exception is the case
where the electron energy satisfies the following condition:

d = κs or E = s

s + d
V. (55)

This is actually the condition of electron beam collimation by
means of a superlattice composed of alternating p-n and n-p
interfaces.

It is remarkable that the above condition could be for-
mulated within the framework of a quasiclassical approach
and actually is not related to band parameters. Previously
the collimation of electrons was related to their spectrum.
It was argued that the presence of flat regions in the elec-
tron energy-momentum spectrum favors collimation16–19,27

of beams propagating in the direction perpendicular to
those flat regions. The disadvantage of the latter technique
was the very small superlattice period (of the order of
nanometers) and rather large barrier heights (of the order
of tenths of electron volts) that were required to observe
collimation (see, e.g., Ref. 18). Note that the quasiclassical
Gaussian beams presented are free of this disadvantage.

VII. CONCLUSIONS

We have rewritten the Gaussian beam expressions used
in optics and adjusted them for the description of Dirac
electrons. The application of Gaussian beams was illustrated
by considering electron beam transmission through simple
nonhomogeneous structures.

It was shown that although a p-n interface in graphene
exhibits a negative refraction for an electron beam, as in an
optical metamaterial, it does not influence the electron beam
waist, which is the essential feature of any lens focusing
of optical rays. A contraction of the beam waist, however,
is possible if one uses a bent p-n interface, which actually
resembles a real lens.

Looking for possible electron beam collimation, we applied
our results to electron propagation in a superlattice and
obtained a general condition under which such a collimation
can be realized. We showed that collimation is possible in the
case of larger lattice constants and smaller barrier heights than
previously predicted.
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