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Excitonic Aharonov-Bohm effect: Unstrained versus strained type-I semiconductor nanorings
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We study how mechanical strain affects the magnetic field dependence of the exciton states in type-I
semiconductor nanorings. Strain spatially separates the electron and hole in (In,Ga)As/GaAs nanorings which is
beneficial for the occurrence of the excitonic Aharonov-Bohm (AB) effect. In narrow strained (In,Ga)As/GaAs
nanorings the AB oscillations in the exciton ground-state energy are due to anticrossings with the first excited state.
No such AB oscillations are found in unstrained GaAs/(Al,Ga)As nanorings irrespective of the ring width. Our
results are obtained within an exact numerical diagonalization scheme and are shown to be accurately described
by a two-level model with off-diagonal coupling t . The later transfer integral expresses the Coulomb coupling
between states of electron-hole pairs. We also found that the oscillator strength for exciton recombination in
(In,Ga)As/GaAs nanorings exhibits AB oscillations, which are superimposed on a linear increase with magnetic
field. Our results agree qualitatively with recent experiments on the excitonic Aharonov-Bohm effect in type-I
(In,Ga)As/GaAs nanorings.
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I. INTRODUCTION

Fabrication of nanometer-sized semiconductor rings trig-
gered interest in the excitonic Aharonov-Bohm (AB) effect.1–7

Simple theoretical models predict oscillations in the exciton
energy in one-dimensional (1D) rings when the magnetic field
through the ring varies.3,4 But further theoretical work showed
no oscillations in the exciton ground-state energy of type-I
2D and 3D nanorings,8,9 or they were found to be extremely
small.5 An interesting analytical model of two concentric 1D
rings, where the electron and the hole are confined on separate
rings, but are Coulomb coupled leading to the formation of an
exciton, showed that the emission intensity for recombination
of this exciton vanishes in certain ranges of magnetic field,
which is called the optical excitonic AB effect.10 However,
these bright-to-dark transitions are found only for the case of
weak effective Coulomb interaction, i.e., when radii of the two
rings are small.10 Furthermore, this analytical model showed
that in order to find the optical excitonic AB effect, one should
polarize the exciton by confining the electron and the hole in
spatially separate potentials. This condition is very difficult to
fulfill in type-I semiconductor nanorings, where the electron
and the hole are radially confined in the same space. The quest
for the AB effect for neutral excitons in type-I nanorings was
not successful until recently.11,12 The electron and hole ground
states exhibit orbital momentum transitions, which give rise to
oscillations in the exciton energy levels with magnetic field,
which is a fingerprint of the AB effect.

An appealing and elegant way to polarize the exciton is
realized in type-II nanodots, which confine the electron (hole)
inside the dot, whereas the hole (electron) is expelled to the
region outside the dot.13,14 Nevertheless, the latter is confined
due to the Coulomb interaction with the former. Such con-
finement establishes favorable conditions for the occurrence
of the optical excitonic AB effect. However, no bright-to-dark
transitions were found and experiments on different systems
showed some contradictory details. As an example, Ref. 14
found that oscillations in the emission intensity of stacks of
ZnTe/ZnSe nanodots are superimposed on a decaying function

with magnetic field. On the other hand, the photoluminescence
intensity in a single InP/GaAs quantum dot was found to
decrease periodically in narrow ranges of magnetic field, and
to increase quasilinearly between these drops.15 A similar
increasing trend with superimposed oscillations was recently
found in an experiment on InGaAs/GaAs nanorings.11

In a beautiful experiment on (In,Ga)As/GaAs nanorings,
Bayer et al. found AB oscillations in the ground state of a
charged exciton.16 However, the ground state of the neutral ex-
citon did not show any oscillations, or they were too small to be
detected experimentally. Those rings were fabricated by means
of lithography and had width of the order of 30 nm. Much
narrower strained (In,Ga)As/GaAs nanorings were fabricated
by means of epitaxy in the Stranski-Krastanov mode,1 which
allows them to self-assemble on lattice mismatched substrates.
Recent experiments, using cross-sectional scanning tunneling
microscopy (X-STM), found that these strained self-assembled
nanorings have volcano-like shapes, with lateral width of about
7 nm. They are formed from self-assembled quantum dots,
by removing the material in the dot center. The process is
driven by strain, and a thin layer of nonuniform thickness
resides in the ring opening. Therefore, these rings are not
fully opened and could be understood as combinations of
a nanoring with a nanodot inside the ring opening.17 The
electron and the hole wave functions extend to the region of
the nanodot, and the transition of the orbital momenta in the
electron ground state shifts toward larger magnetic fields.18,19

In addition to the Stranski-Krastanov growth, an interesting
new method to create nanorings is by the technique of droplet
epitaxy.20 These rings are usually based on an unstrained
GaAs/(Al,Ga)As heterostructure and are typically larger than
the strained (In,Ga)As/GaAs nanorings.

In this paper, we investigate the influence of strain on
the exciton states in type-I nanorings in the presence of a
normal magnetic field. We compute the exciton states in (1)
an (In,Ga)As nanoring embedded in a GaAs matrix, and (2)
a GaAs nanoring embedded in an (Al,Ga)As matrix. The
geometry of both rings and their characteristic dimensions
are displayed in Fig. 1(a). They are generated by revolving a
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FIG. 1. (Color online) (a) The geometry of the nanoring. (b) The
confining potentials due to the band offsets as they vary along the
ρ axis (z = 0). The electron and hole energy levels, Ee and Eh,
are measured with respect to the top of the valence band in the
semiconductor matrix.

rectangle of height h and width W about the z axis. The inner
radius of the ring is R1 and the outer radius is R2 = R1 + W .
Energy is measured with respect to the top of the valence band
in the matrix material, and the energy axis for holes points
downward, as shown in Fig. 1(b). Figure 1(b) also shows the
energy level of the electron Ee, the hole energy Eh, and the
energy of the bottom of the conduction band in the matrix
Egm. Furthermore, the potentials due to the offsets of the
conduction and valence band, Voff,e and Voff,h, respectively,
as they vary with ρ for z = 0 are depicted in Fig. 1(b). In
the case of the (In,Ga)As nanoring the rectangular potential
wells shown in Fig. 1(b) are modified by strain, which arises
from the lattice mismatch between (In,Ga)As and GaAs. The
strain distribution is extracted from the continuum mechanical
model, and the finite element method (FEM) is employed
to discretize the components of the displacement vector on
a nonuniform mesh.21 The GaAs/(Al,Ga)As nanorings are
taken to be strain free and are assumed to have the same
dimensions as the (In,Ga)As/GaAs nanorings. The effects of
strain are studied as a function of the ring dimensions, and its
consequences for the variations of the exciton energy levels
with magnetic field are critically examined.

The effective-mass Schrödinger equations for the electron
and the hole are solved by FEM on the same mesh used to
compute the strain distribution. Products of the electron and
hole wave functions form the basis to construct the full exciton
Hamiltonian matrix. However, such an exact diagonalization
scheme lacks a simple parametrization of the exciton energy
levels. Therefore, we employ Löwdin perturbation theory to
construct the approximate exciton Hamiltonian which has

the form of a tight-binding model, and takes into account
the interaction between the two lowest energy states of the
electron-hole pair. This model is employed to explain both the
observed anticrossings between the exciton energy levels and
the role of strain on the exciton AB oscillations. Furthermore,
from the exciton wave function, the oscillator strength for
exciton recombination is calculated. The exciton energy
levels and the oscillator strength are determined as they vary
with magnetic field, for a range of 3D ring widths. We will
explore the excitonic AB effects in 3D type-I nanorings and
investigate their dependence on the width of the nanoring,
i.e., the non-1D character of the electron and hole motion. A
similar model was recently successfully used to compute the
exciton states in stacks of (In,Ga)As/GaAs nanorings in the
absence of a magnetic field.22

The paper is organized as follows. Sec. II describes our theo-
retical approach to compute the electronic structure of the elec-
trons, holes, and excitons. The numerical results are presented
and explained in Sec. III. Our conclusions are given in Sec. IV.

II. THE THEORETICAL MODEL

A. The exciton Hamiltonian

Both the (In,Ga)As/GaAs and GaAs/(Al,Ga)As nanorings
are made of sufficiently large band-gap semiconductors, and
thus the single-band effective mass model,

H = T + HZ + Veff, (1)

can be used to compute the single-particle states in the
conduction band. Here T denotes the kinetic part of the
Hamiltonian, HZ is the Zeeman term, and Veff is the effective
potential which takes into account both the band offset between
the ring and the matrix semiconductor and the influence of
strain. For our axially symmetric rings, the use of cylindrical
coordinates ϕ, ρ, and z is appropriate.

Tetrahedral deformation of the crystal lattice due to strain
in the (In,Ga)As/GaAs nanorings makes the effective potential
well for the heavy holes deeper than the one for the light
holes. Hence, the exciton ground state is mainly of heavy-hole
character, which justifies the use of only the single-band
effective-mass Hamiltonian to compute the electron and hole
states in these nanorings. On the other hand, the use of
the single-band model for the unstrained GaAs/(Al,Ga)As
nanorings is more limited. Yet, because of the larger effective
mass, exciton wave functions are dominated by the heavy-hole
envelope functions. Therefore, we use the single-band model
for the heavy-hole states in both analyzed nanorings.

The strain distribution in the (In,Ga)As/GaAs nanorings
is obtained from the 3D continuum mechanical model,
following Ref. 21. For that purpose, a nonuniform 3D mesh is
adopted. The computed strain distribution is incorporated in
the effective potential with the assumption of axial symmetry
by averaging the strain tensor components over the polar
angle.23 Therefore, the effective potentials in the conduction
and heavy-hole band depend only on ρ and z,

Veff(ρ,z) = Voff(ρ,z) + Vstr(ρ,z), (2)

where Voff denotes the potential due to band offset, and
Vstr is the strain-dependent effective potential. For the
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conduction-band electron

Vstr,e = ac(εxx + εyy + εzz), (3)

and for the heavy hole

Vstr,h = −
(

av + b

2

)
(εxx + εyy) − (av − b) εzz. (4)

Here, ac, av , and b denote the deformation potentials, whereas
εxx , εyy , and εzz are the diagonal components of the strain
tensor.

The kinetic part of the Hamiltonian is written in the
symmetric gauge

T = − h̄2
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(
1

m‖
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∂

∂ρ

− h̄2

2mz
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2

∂
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(
1
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)
∂

∂z

+ h̄2

2m‖

1

4l4
c

ρ2 − h̄2

2m‖

i

l2
c

∂

∂ϕ
, (5)

where lc = (h̄/eB)1/2 is the magnetic length, and m‖ and mz

in Eq. (5) are the effective masses in the xy plane and along
the z direction, respectively. m‖ = mz for the electron in the
conduction band, while for the heavy hole m‖ and mz are
extracted from the diagonal approximation of the multiband
Luttinger-Kohn model.23,24

The Zeeman term is given by

HZ,e = ±geffμBB/2, (6)

HZ,h = ∓3κμBB, (7)

for the electrons and heavy holes, respectively. Here, μB is
the Bohr magneton, geff is the effective Landé g factor, κ is
the Luttinger parameter describing the Zeeman splitting of the
hole states, and the upper (lower) sign in Eqs. (6) and (7) refers
to the spin-up (spin-down) state.

In order to solve the single-band effective-mass
Schrödinger equation, H� = E�, the Galerkin form of the
finite element method is employed. Our calculations rely on∫

V

[u∇A + (A · ∇)u] dr =
∮

S

uA · dS, (8)

where V denotes the solution domain, u is an arbitrary scalar
function, A is an arbitrary vector-valued function, and S is the
boundary of V . When applied to the Hamiltonian (1), Eq. (8)
gives∫

V

u(T̃ + H̃Z + Ṽeff)�dr

=
∫

V

m0

m‖

(
1

ρ2

∂u
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∂�

∂ϕ
+ ∂u

∂ρ
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)
dr

+
∫

V

m0

mz

(
∂u

∂z

∂�

∂z

)
dr +

∫
V

uH̃ ′
B�dr +

∫
V

uṼ �dr.

(9)

Here, T̃ , H̃Z , and Ṽeff , are T , HZ , and Veff divided by h̄2/(2m0),
respectively. Furthermore, H̃ ′

B = H ′
B/(h̄2/2m0), where H ′

B are
the last two terms of Eq. (5).

The single-particle Hamiltonian is axially symmetric, and
therefore the projection of the orbital quantum number on the
z axis Lz = lh̄ is a good quantum number for both the electron
and hole states. The single-particle states are denoted by nlσ ,
where n denotes the principal quantum number, and σ is a
parity of the state with respect to z. They could additionally be
labeled by spin, but we are interested in the (electron) spin-up
states in the two bands whose eigenenergies are lower than the
energies of the spin-down states. The wave function of the nlσ

state is written as �σ
ln, and the eigenenergy as Eσ

ln. The energies
of the electron and hole ground states, whose orbital momen-
tum varies with B, are denoted by the symbols E(1)

e and E
(1)
h .

Because of axial symmetry, the single-particle wave func-
tion of the nlσ state can be written as

�σ
ln(ϕ,ρ,z) = 1√

2π
eilϕψσ

ln(ρ,z), (10)

where ψσ
ln(ρ,z) is expanded in products of the first-order shape

functions

ψσ
ln(ρ,z) =

∑
jk

cjkfj (ρ)fk(z), (11)

which are labeled by the mesh points, j and k. On the master
element [−1,1], the first-order shape function has the form

f (ξ ) = 1 ± ξ

2
. (12)

Equation (11) leads to the generalized eigenvalue problem

Hc = ESc. (13)

The matrix elements of H and S are given by Hij = 〈fi |H |fj 〉
and Sij = 〈fi |fj 〉.

The exciton states are extracted from the equation

Hx�x = (He + Hh + VC)�x = Ex�x, (14)

where Hx denotes the exciton Hamiltonian, Ex is the exciton
eigenenergy, �x = �x(re,rh) is the exciton wave function, He

and Hh are the electron and the hole Hamiltonian, respectively,
and VC is the Coulomb potential,

VC(re,rh) = − e2

4πεsε0

√
ρ2

x + (ze − zh)2
. (15)

Here ε0 is the vacuum permittivity, εs is the relative permittivity
of the material inside the ring, ze and zh are the values of the z

coordinate of the electron and the hole, respectively, whereas
ρx denotes the projection of the distance between the electron
and the hole on the xy plane,

ρx = [
ρ2

e + ρ2
h − 2ρeρh cos(ϕe − ϕh)

]1/2
. (16)

From now on, ρx will be referred as the in-plane distance
between the electron and the hole.

Let us briefly examine which quantum numbers label the
exciton states. The in-plane distance ρx does not depend on the
polar angles of the electron and the hole, ϕe and ϕh, separately,
but on the difference ϕe − ϕh. It implies that rotation of
the exciton over the z axis by an arbitrary angle does not
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affect the Coulomb interaction, and consequently the orbital
momentum L = le + lh is a good quantum number for the
exciton. Furthermore, Hx possesses inversion symmetry with
respect to simultaneous reversal of the ze and zh coordinates.
Therefore, the exciton parity σx is a good quantum number. The
even and odd exciton states, σx = + and σx = −, respectively,
are composed of the electron and hole states of equal and
opposite parity, respectively. For the given exciton and electron
parities, σx and σe, respectively, the hole parity σh = σh(σx,σe)
has the following values:

σh(+,+) = +, σh(+,−) = −,
(17)

σh(−,+) = −, σh(−,−) = +.

The exciton states are arranged in spin quartets [↑↑,↑↓,

↓↑,↓↓], where the first (second) arrow indicates the spin of
the conduction (valence) band state. The Zeeman terms in
Eq. (14) remove the degeneracy between the spin quartets
so that the ↑↑ exciton state has the lowest energy among
their counterparts. Furthermore, energies of the odd exciton
states are higher by a few tens of meV from those of the
even exciton states. Therefore, only even exciton states of the
spin-up electron and spin-up hole are presented and discussed
in Sec. III. The exciton states are denoted by nLσx , and the
exciton eigenenergies by E

σx

xnL, where n denotes the principal
quantum number. For the energies of the nS+ states we use
the abbreviated symbol E(n)

x .
In our exact diagonalization approach, we expand the

exciton wave function as follows:

�x =
∑
σe

∑
le

∑
ne

∑
nh

c
σe

le,ne,nh
�

σe,σh

eh(le,ne),(lh,nh) , (18)

where lh = L − le, σh = σh(σx,σe), and �eh denotes the
electron-hole wave function,

�
σe,σh

eh(le,ne),(lh,nh) = �
σe

le,ne
(re)�σh

lh,nh
(rh). (19)

The exciton Hamiltonian now reads

Hx = (
E

σe

le,ne
+ E

σh

lh,nh

)
δσ ′

e,σe
δl′e,le δn′

e,ne
δn′

h,nh

+
∑
σe

∑
le

∑
ne

∑
nh

〈
�

σ ′
e

l′e,n′
e
�

σ ′
h

l′h,n
′
h

∣∣VC

∣∣�σe

le,ne
�

σh

lh,nh

〉
, (20)

where δ denotes the Kronecker delta and Egm is the energy
gap in the GaAs matrix. A straightforward calculation of the
Coulomb matrix element gives

〈
�

σ ′
e

l′e,n′
e
�

σ ′
h

l′h,n
′
h

∣∣VC

∣∣�σe

le,ne
�

σh

lh,nh

〉 = 1

4π2

e2

εε0
δl′e+l′h,le+lh

×
∫ ∞

0
dk‖k‖

∫ +∞

−∞
dkz

1

k2
‖ + k2

z

Fe(k‖, − kz)Fh(k‖,kz),

(21)

where k‖ and kz denote the in-plane and the z component
of the wave vector in Fourier space, respectively. Fe is the
two-dimensional transform given by

Fe(k‖,kz) =
∫ ∞

0
ρ dρ

∫ +∞

−∞
dzψ

σ ′
e∗

l′e,n′
e
ψ

σe

le,ne
J|l′e−le |(k‖ρ)eikzz,

(22)

with Jl(x) being the Bessel function of the first kind.

As a figure of merit of the exciton, we compute the average
exciton in-plane radius R‖, whose square is given by

R2
‖ = 〈ρ2

x 〉 =
∫

Ve

dre

∫
Vh

ρ2
x (re,rh)|�x(re,rh)|2drh, (23)

where ρx(re,rh) is given by Eq. (16). Replacing the single-
particle wave function with the form in Eq. (10), and taking
into account parity, results in

R2
‖ =

∑
σe

∑
le

∑
n′

e,ne

∑
n′

h,nh

c
σe∗
le,n′

e,n
′
h
c
σe

le,ne,nh

× [〈le,n′
e|ρ2

e |le,ne〉δl′h,lh + δl′e,le 〈lh,n′
h|ρ2

h|lh,nh〉]
− c

σe∗
le−1,n′

e,n
′
h
c
σe

le,ne,nh

×〈le − 1,n′
e|ρe|le,ne〉〈lh + 1,n′

h|ρh|lh,nh〉
− c

σe∗
le+1,n′

e,n
′
h
c
σe

le,ne,nh

×〈le + 1,n′
e|ρe|le,ne〉〈lh − 1,n′

h|ρh|lh,nh〉, (24)

where lh = L − le. The matrix elements in Eq. (24),

〈l′,n′|ρk|l,n〉 =
∫ H/2

−H/2
dz

∫ R

0
ρkψ∗

l′n′ (ρ,z)ψln(ρ,z)ρ dρ,

(25)

are computed numerically for k = 0,1,2 on the solution
domain of radius R and height H .

In addition to R‖, a few other parameters of the exciton
states are computed: (1) the binding energy of the exciton

Eb = E(1)
e + E

(1)
h − E(1)

x ; (26)

(2) the contribution of the electron orbital momentum le to the
exciton wave function

ple =
∑
σe

∑
ne

∑
nh

∣∣cσe

le,ne,nh

∣∣2
; (27)

and (3) the conditional probability density (CPD)

P (rh|re0) = |�x(re0,rh)|2∫
Vh

|�x(re0,rh|2drh

. (28)

The last parameter is the probability to find the hole at rh under
the condition that the electron is located at re0 = (ϕe0,ρe0,ze0).
The exciton wave function depends on the difference ϕe − ϕh,
and therefore the shape of the CPD does not depend on the
choice of ϕe0, and thus we may take ϕe0 = 0. The other two
coordinates ρe0 and ze0 are chosen to correspond to the position
of the maximum of the probability density of the exciton state
|�x |2. It appeared that the value ρe0 is close to the average
radius of the ring (R1 + R2)/2, whereas ze0 = 0.

B. The two-level exciton Hamiltonian

The exact diagonalization approach presented in the pre-
vious section produces relatively large Hamiltonian matrices
and lacks a simple parametrization of the Ex dependence on B.
It turns out that the amplitude of the excitonic AB oscillations
depends on how efficiently 1S+ and 2S+ states couple with
varying magnetic field. Therefore we construct a simple model
to approximately describe coupling between these states. It
has the form of a 2 × 2 matrix and is derived by means of
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Löwdin perturbation theory applied to the exciton Hamiltonian
of Eq. (20). This model is restricted to the range 0 � B � B1,
where the 1S+ and 2S+ exciton states are mainly composed
of the �+

(0,1)e
�+

(0,1)h
≡ |0,0〉 and �+

(−1,1)e
�+

(+1,1)h
≡ | − 1, + 1〉

electron-hole states. The latter states form the basis to expand
the exciton wave function, which yields

Hx0 =
[
Eeh(0,0) t0

t0 Eeh(−1,+1)

]
. (29)

Here,

Eeh(0,0) = Ee(0,1) + Eh(0,1) (30)

and

Eeh(−1,+1) = Ee(−1,1) + Eh(+1,1) (31)

are the energies of the electron-hole states, and t0 denotes
the transfer integral due to the Coulomb interaction between
the two electron-hole states in the basis. The other electron-
hole states have higher energies than the two basis states, and
their contribution to the exciton states is approximately taken
into account by the Löwdin perturbation expansion

H ′
x,ij =

N∑
k=3

Hx,ikHx,kj

E − Hx,kk

. (32)

The value of the unperturbed energy E is estimated as

E = min(Eeh(0,0),Eeh(−1,+1)), (33)

and N is the total number of electron-hole states for L = 0 in
the expansion in Eq. (18). Hence, the approximate Hamiltonian
has the form

H̃x = Hx0 + H ′
x =

[
Ẽ(0,0) tB

tB Ẽ(−1,+1)

]
. (34)

The diagonal elements in this matrix are given by

Ẽ(0,0) = Eeh(0,0) + �E(0,0) (35)

and

Ẽ(−1,+1) = Eeh(−1,+1) + �E(−1,+1), (36)

where �E(0,0) and �E(−1,+1) are due to coupling with the
electron-hole states outside the basis. The transfer integral tB
in Eq. (34) essentially describes how the |0,0〉 and | − 1, + 1〉
states couple due to the Coulomb interaction in the 1S+ and
2S+ states. Because |tB | 
 Ẽeh(0,0) and |tB | 
 Ẽeh(−1,+1), the
Hamiltonian (34) has the form of a tight-binding approxima-
tion to the exciton Hamiltonian.

The dependence of tB on B is determined numerically,
and thus H̃x c̃x = Exc̃x does not have an analytical solution.
Nevertheless, we note that the single-particle energy levels
depend approximately quadratically on B. Also, |�E(0,0)| 

E(0,0), and |�E(−1,+1)| 
 E(−1,+1); therefore the diagonal
matrix elements of H̃x are approximated as

Ẽ(0,0)(B) ≈ E(0,0)0 + a0(B − B(0,0)0)2 (37)

and

Ẽ(−1,+1)(B) ≈ E(−1,+1)0 + a1(B − B(−1,+1)0)2, (38)

where a0, a1, B(0,0)0, B(−1,+1)0, E(0,0)0, and E(−1,+1)0 are
constants. The energies of the electron-hole states Eeh(0,0) and
Eeh(−1,+1) cross close to B1/2. Because |�E0,0| 
 Eeh(0,0) and
|�E−1,+1| 
 Eeh(−1,+1), Ẽ(0,0) and Ẽ(−1,+1) also cross close
to B1/2, i.e., at B = Bc ≈ B1/2.

Moreover, the transfer integral tB does not vary much with
B, which will be illustrated below. Because the dependence
of the exciton energy levels with B around B1/2 is of interest
to us, tB in Eq. (34) might be replaced with t = tB(Bc) ≈
tB(B1/2). Hence, the approximate form of the two-level model
(TLM) reads

H̃x ≈
[
Ẽ(0,0) t

t Ẽ(−1,+1)

]
. (39)

The solutions of the secular equation det(H̃x − ExI ) = 0 are
given by

E±
x = f+ ±

√
f− + t2, (40)

where

f± = Ẽ(−1,+1) ± Ẽ(0,0)

2
. (41)

The exciton energy levels given by Eq. (40) will be compared
with the results from the above exact diagonalization approach.
The advantage of the former is that oscillatory features of
the Ex(B) function are described only by a few parameters.
Furthermore, these parameters could be adjusted to increase
the amplitude of the oscillations in the exciton energy. For
example, varying the dimensions of the ring and introducing
mechanical strain in the structure could increase the overlap
between the electron and hole wave functions, which affects
the transfer integral and in turn the dependence of Ex on B.
When the magnitude of t increases, coupling between the two
exciton states computed by the TLM increases. It then leads to
a decrease of the gap between the E−

x and E+
x states, and in turn

the amplitude of the oscillations in the exciton ground-state
energy increases.

C. The oscillator strength for exciton recombination

The oscillator strength for exciton recombination is given
by

fx = 2

m0Ex

|〈uc0|ε · p|uv0〉|2|M|2. (42)

Here, ε denotes the unit vector of polarization of out-coming
light, uc0 and uv0 are the periodic parts of the Bloch functions of
the electron in the conduction and valence band, respectively,
p is the electron momentum, Ex is the exciton energy, m0 is
the free-electron mass, and M denotes the transition matrix
element between the envelope functions,27

M =
∫

Ve,Vh

δ(re − rh)�x(re,rh)dredrh. (43)

For equal spins of the electron and the hole, and even parity
of the exciton, only L = le + lh = 0 exciton states are bright;
therefore

M =
∑
σe

∑
le

∑
ne

∑
nh

c
σe

le,ne,nh
〈le,ne| − le,nh〉. (44)
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TADIĆ, ČUKARIĆ, ARSOSKI, AND PEETERS PHYSICAL REVIEW B 84, 125307 (2011)

We assume light polarized along the x direction, for which the
matrix element squared between the zone center states is given
by25,26

|〈uc0|px |uv0〉|2 = m2
0P

2

2h̄2 , (45)

where P denotes the Kane interband matrix element. When
Eqs. (43)−(45) are inserted in Eq. (42), the expression for fx

of a bright exciton state follows

fx = 1

2

EP

Exi

∣∣∣∣ ∑
σe

∑
le

∑
ne

∑
nh

c
σe

le,ne,nh
〈le,ne| − le,nh〉

∣∣∣∣
2

, (46)

where EP = 2m0P
2/h̄2. At finite temperature, the dark states

are occupied with a finite probability. One defines the (dimen-
sionless) photoluminescence intensity,15

IPL =
∑

i fxi exp (−Exi/kBT )∑
i exp (−Exi/kBT )

, (47)

which takes into account that the exciton states, labeled by a
single index i, are populated according to Boltzmann statistics.

III. NUMERICAL RESULTS AND DISCUSSION

We compute the exciton states in both strained
(In,Ga)As/GaAs and unstrained GaAs/(Al,Ga)As nanorings.
The (In,Ga)As/GaAs nanorings have been recently fabricated
and analyzed.18 X-STM analysis revealed they have nearly
circular cross section with inner radius R1 = 8 nm, outer
radius R2 = 15 nm, and height h = 4 nm. Therefore, in our
numerical calculations we took R1 equals 8 nm, h = 4 nm,
whereas the ring width W is varied in the range from 2 to
22 nm. We assumed that the mole fraction of InAs in the
ring is x = 0.55.18 As previously noted, the GaAs/(Al,Ga)As
nanorings have been produced by means of the droplet
epitaxy technique.20 Their lateral dimensions are usually
larger than the respective dimensions of the (In,Ga)As/GaAs
nanorings. But, in order to explore how mechanical strain
affects the magnetic field dependence of the exciton energy
levels, the GaAs/(Al,Ga)As nanorings are assumed to have the
same dimensions as the (In,Ga)As/GaAs nanorings. The
(Al,Ga)As alloy is assumed to contain 30% of AlAs.

The parameters of the band structure and elastic constants
of (In,Ga)As, GaAs, and (Al,Ga)As are all taken from
Ref. 24. The conduction-band offset amounts to 83% and
65% of the band-gap difference in the (In,Ga)As/GaAs
and GaAs/(Al,Ga)As system, respectively.24,28 Measure-
ments of the Zeeman splitting of the energy levels in the
(In,Ga)As/GaAs nanodots indicated that the energy-level
splitting is much smaller than what is found in bulk (In,Ga)As
and to be closer to bulk GaAs.29 Therefore, the effective Landé
g factor geff and the Luttinger parameter κ in both analyzed
structures are assumed to be position independent and to be
equal to the values in GaAs, −0.44 and 1.2, respectively. The
basis for the exciton states is constructed from 6 even and 2
odd single-particle states for each l (le or lh) in the range from
−7 to +7. We took temperature T = 1 K.

The nonuniform mesh in the finite-element calculation
of the single-particle states is constructed from 129 points
along both the ρ and z direction. The expansion domain is

H = 200 nm high and its radius is R = 120 nm. Such a large
domain was needed because the effective potentials decrease
slowly in the matrix as a result of a slow strain decay toward
the zero value when the distance from the ring increases.22

We note that the effective potentials are not abrupt, yet they
have large slope due to small size of employed quadrilateral
elements in the vicinity of the ring boundary. We used the
same mesh for both the (In,Ga)As/GaAs and GaAs/(Al,Ga)As
nanorings.

A. The exciton states in the strained nanorings

The effective potentials in the conduction and valence bands
of the W = 7 nm wide (In,Ga)As/GaAs nanoring along the
ρ direction are shown in Figs. 2(a) and 2(b), respectively.
The effective potential well for the electron is deeper than
the effective potential well for the heavy hole. On the other
hand, the heavy hole is confined in a wide effective potential
well, which is much deeper than the effective potential well
for the light hole. It turns out that the energy levels of the
light hole are pushed by strain further from the heavy-hole
energy levels towards the continuum. Consequently, strain
reduces mixing between the light holes and the heavy holes,23

which supports the use of the diagonal approximation of the
Luttinger-Kohn model when computing the hole states in the

FIG. 2. (Color online) (a) The effective potential for the electron
in the (In,Ga)As/GaAs nanoring along the radial axis for z = 0.
(b) The same for the heavy hole (solid line) and the light hole (dashed
line). (c) The electron energy levels in the (In,Ga)As/GaAs nanoring
as they vary with magnetic field. (d) Negative of the heavy-hole
eigenenergies as function of magnetic field. The ground states E(1)

e and
E

(1)
h oscillate with magnetic field, and the orbital momentum changes,

as indicated by numbers adjacent to the curves. The ring has an inner
radius R1 = 8 nm, a width W = 7 nm, and a height h = 4 nm.
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FIG. 3. (Color online) The lowest energy L = 0 (solid lines) and
L = −1 states (dashed lines) in (a) the W = 2 nm, (b) the W =
7 nm, and (c) the W = 17 nm wide (In,Ga)As/GaAs nanoring. B1

denotes the magnetic field value where E(2)
x has a maximum due

to the anticrossing with the E(3)
x state. Right panel displays detailed

views of the exciton ground-state energy at low magnetic fields.

(In,Ga)As/GaAs nanorings. Variations of the electron and
hole states with magnetic field are shown in Figs. 2(c) and
2(d). Both the electron and hole energy levels show orbital
momentum transitions, which take place at almost the same
magnetic field values. Therefore, to a large extent we may
infer that the orbital momentum of the exciton ground state
is L = le + lh = 0 irrespective of the magnetic field value.
The magnetic field where the 1s+ and 2s+ energy levels cross
corresponds approximately to the condition that half the flux
quantum (� = �0 = h/2e) threads the 1D ring of the radius
(R1 + R2)/2.

The exciton ground state is indeed 1S+, as Figs. 3(a), 3(b),
and 3(c) show for the W = 2, W = 7, and W = 17 nm wide
(In,Ga)As/GaAs nanoring, respectively. Details of E(1)

x as a
function of B for the three cases are shown in the right panel
of Fig. 3, and show clearly that the width of the ring affects
the energy variation of the exciton ground state with magnetic
field. While the case of the W = 17 nm wide ring, Fig. 3(c),
does not clearly demonstrate oscillations in E(1)

x , they become
evident in the W = 2 and 7 nm wide rings [see Figs. 3(a)
and 3(b)]. The first minimum of E(1)

x in Figs. 3(a)–3(c) arises
from anticrossing with the 2S+ state and is affected by the
Zeeman splitting at low magnetic field, when the diamagnetic
shift is small. Out of the three curves in the right panel of
Fig. 3, only E(1)

x of the 7 nm wide ring exhibits two minima.
By comparing Figs. 2 and 3, we see that the anticrossings of
the exciton state take place close to the orbital momentum

transitions of the single-particle states. The energy difference
between E(2)

x and E(1)
x , i.e., Ex(2,1) = E(2)

x − E(1)
x , is explicitly

indicated in Fig. 3(b). The other parameter is �x , the difference
between the first maximum and the second minimum of the
E(1)

x (B) curve, which is indicated in the right panel of Fig. 3(b).
Figures 3(a) and 3(c) indicate that the effect of the anticrossing
in the 2 nm and 17 nm wide rings is so strong that small or no
AB oscillations are visible. For the intermediate case, shown
in Fig. 3(b), the effect of anticrossing is relatively small, and
therefore a second minimum appears in the E(1)

x dependence
on B. Moreover, irrespective of the ring width, quite large
oscillations, with amplitude of the order of 10 meV, exist in
the higher exciton energy levels. The value of magnetic field
where the 2S+ and 3S+ states anticross, which is denoted
by B1, is explicitly indicated in Fig. 3(b). The observed
anticrossings are modeled with the TLM, and those results
will be presented and discussed in the following section.

Figure 4(a) shows the variation of Ex(2,1) with B in the
W = 7 nm wide (In,Ga)As/GaAs nanoring. It is oscillatory
with the minima corresponding to anticrossings between the
1S+ and 2S+ states. The ratio of magnetic field values where
these minima take place is close to 1:3:5:..., which is the exact
order of the single-particle orbital momentum transitions in 1D

FIG. 4. (Color online) (a) The difference between the two lowest
energy L = 0 exciton states, Ex(2,1), (b) the binding energy of the
exciton ground state Eb, and (c) the average in-plane radius R‖ as
they vary with B in the W = 7 nm wide (In,Ga)As/GaAs nanoring.
The minima in (a) and (c) correspond to maxima in (b), which is
indicated by the dashed vertical lines.
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rings.19 The radius of the equivalent 1D ring estimated from
the flux quantum �0 = h/e and the magnetic field interval
between two minima �B in Fig. 4(a) is R1D = (h/eπ�B)1/2

= 10.7 nm, which is close to the average of the inner and outer
radius of the ring, (R1 + R2)/2 = 11.5 nm. Each minimum
of Ex(2,1) corresponds to a maximum of the binding energy
Eb, as shown in Fig. 4(b). Furthermore, due to the nonsmooth
variation of E

(1)
h and E(1)

e (see Fig. 2), Eb exhibits spikes at
anticrossings. When Eb is large, the Coulomb interaction is
large, and the electron and the hole are bound close to each
other, as demonstrated in Fig. 4(c). Oscillations in R‖ are
clearly observed in Fig. 4(c), although the amplitude of these
oscillations is not large.

The positions of the anticrossings in Fig. 3 are associ-
ated with the crossings between different ple (B) curves, as
Figs. 5(a) and 5(b) demonstrate for the 1S+ and 2S+ state,
respectively. For B < Bc ≈ B1/2 the largest contribution to
the 1S+ state arises from the le = 0 states [see Fig. 5(a)],
and the le = −1 electron wave functions dominate in the 1S+
exciton state for Bc < B < B1. In contrast, the 2S+ state is
mainly composed of the le = −1 states for B < Bc, whereas
the le = 0 mostly contribute to this state for Bc < B < B1.
Hence, when two exciton states anticross, the composition of
the exciton wave function changes. Furthermore, the p0(B)
curve crosses the p−2(B) curve at B = B1.

FIG. 5. (Color online) The contribution of the le = −2, − 1,0,

and +1 electron states to (a) the 1S+ and (b) the 2S+ states in the
W = 7 nm wide (In,Ga)As/GaAs nanoring.

FIG. 6. (Color online) The dependence of the transfer integral
tB on the magnetic field in (a) the (In,Ga)As/GaAs and (b) the
GaAs/(Al,Ga)As nanorings.

B. Comparisons between strained and unstrained nanorings

An important parameter given by Eq. (34) in the TLM of
the excitonic Hamiltonian in this model is the transfer integral
tB . Figures 6(a) and 6(b) show the dependence of tB on B

in the range [0,B1]. Due to the crossings between the single
particle states, tB vs B exhibits a kink at B = Bc. Also, it is
of the order of a few meV in both structures, and varies by
less than 1 meV; hence the approximation t(B) ≈ t(Bc) ≡ tB ,
employed to derive the TLM, is justified. The largest tB is
found in the W = 7 nm wide ring, while comparatively smaller
tB is found for the 2 and 17 nm wide rings. It indicates that
the coupling between the electron-hole states in the TLM
is largest in the W = 7 nm wide ring. Moreover, because
tB in the GaAs/(Al,Ga)As nanorings is larger, the excitonic
AB oscillations are expected to be smaller than those in the
(In,Ga)As/GaAs nanorings.

The dependence of E−
x on B extracted from the TLM is

very close to the one obtained from the exact diagonalization
approach, as the red solid and dashed curves in Fig. 7 show.
This figure demonstrates that the excitonic AB oscillations
decrease when t increases. The excitonic AB oscillations are
resolved according to the criterion that the second derivative
of E−

x with respect to B changes sign at least once in
the range [0,B1]. That change arises from the anticrossing
between the 1S+ and 2S+ states, but is present if the transfer
integral does not exceed a critical value tcr . The ranges of t

125307-8



EXCITONIC AHARONOV-BOHM EFFECT: UNSTRAINED . . . PHYSICAL REVIEW B 84, 125307 (2011)

FIG. 7. (Color online) The variations of E(1)
x (B) and E(2)

x (B)
functions with t in (a) the W = 2 nm, (b) the W = 7 nm, and
(c) the W = 17 nm wide (In,Ga)As/GaAs nanoring. No AB oscil-
lations are present in the yellow regions, when t � tcr . The solid red
curves denote the exciton ground-state energies extracted from the
exact diagonalization approach, whereas the dashed red curves are
the TLM results.

where the excitonic AB oscillations do not occur are displayed
as the yellow regions in Fig. 7. For all three cases in this
figure the E(1)

x (B) curves are rather close to the critical case.
Nevertheless, for the cases W = 2 and W = 7 nm, t < tcr ,
and therefore oscillations in the exciton ground-state energy
are found, whereas for W = 17 nm t > tcr , and the oscillations
of E(1)

x as function of B are absent in Fig. 7(c).

FIG. 8. (Color online) The same as Fig. 7, but now for the
unstrained GaAs/(Al,Ga)As nanoring of width (a) W = 2 nm,
(b) W = 7 nm, and (c) W = 17 nm.

In GaAs/(Al,Ga)As nanorings the exciton ground-state
energy variation with B is much smoother than in
(In,Ga)As/GaAs nanorings, as is apparent from Fig. 8. Never-
theless, similar to Fig. 7 the results of the exact diagonalization
calculations and the TLM are close to each other for all three
values of the ring width. The TLM calculations reveal that
excitonic AB oscillations do not appear for all three values of
the ring width. However, the result for the E(1)

x variation with B

obtained with the exact diagonalization approach is very close
to the tcr case for the W = 2 and 7 nm wide rings, as shown in
Figs. 8(a) and 8(b). On the other hand, no change of sign in the

125307-9



TADIĆ, ČUKARIĆ, ARSOSKI, AND PEETERS PHYSICAL REVIEW B 84, 125307 (2011)

FIG. 9. (Color online) The CPD of the 1S+ and 2S+ exciton states in the plane of the W = 7 nm wide (In,Ga)As/GaAs nanoring for a few
characteristic values of the magnetic field [see Fig. 3(b)]. The solid bullet denotes the position of the electron, and the two concentric circles
denote the ring lateral boundaries. Top panels: The CPD of the 1S+ state for (a) B = 0, (b) B = 2.4 T, (c) B = 6 T, and (d) B = 9.4 T. Bottom
panels: The CPD of the 2S+ state for (e) B = 0, (f) B = 2.4 T, (g) B = 6 T, and (h) B = 9.4 T.

quantity d2E−
x /dB2 is found for W = 17 nm, and thus tcr = 0,

as Fig. 8(c) displays. Therefore, both employed models show
that no AB oscillations are found in the exciton ground state for
GaAs/(Al,Ga)As nanorings. Furthermore, comparing Figs. 7
and 8 we find that excitonic AB oscillations exist only in a few
nm wide strained rings.

Figure 9 shows the CPD of the 1S+ and 2S+ states in the
W = 7 nm wide (In,Ga)As/GaAs nanoring for magnetic field
values where the extrema of the E(1)

x dependence on B are
found in Fig. 3(b). The solid bullet indicates the fixed electron
position, and the CPD is shown in the (xh,yh) plane. One may
notice that the hole in the 1S+ exciton state stays close to the
electron [Figs. 9(a)–9(d)], whereas the two particles separate
from each other in Figs. 9(e)–9(h). The CPD of the 2S+ state
is characteristic of excited states, as previously found for
the 2D rings.8 It indicates the possibility of the electron
and hole tunneling through the Coulomb potential barrier
in opposite directions.8 When the magnetic field increases,
the CPD of both states changes. Yet, the CPD of the 2S+
state exhibits larger variation with magnetic field, which is
supported with the observed larger variation of the E(2)

x energy
in the range [0,B1] in Fig. 3(b). For B = 6 T, where the 1S+ and
2S+ states anticross, the hole becomes maximally attracted to
the electron in the 1S+ state, which is also demonstrated by the
minimum of the R‖ dependence on B in Fig. 4(c). One may also
notice that because of the shape of the confining potential for
the hole inside the ring opening [see Fig. 2(b)], the hole extends
to the inner part of the ring as is also apparent from the CPD
plots. The effective potential well for the hole allows its wave
function to extends radially toward the ring center, whereas the
electron is more localized in the ring. Therefore, the transfer
integral is reduced due to different spatial localizations of the
electron and the hole, which gives rise to oscillations of the
exciton energy levels with B. Such a situation mimics type-II

quantum dots, where the hole is localized inside the dot, and the
Coulomb interaction confines the electron in the ring-shaped
effective potential well around the barrier. The CPD variations
with B in the GaAs/(Al,Ga)As nanorings are similar to the
ones displayed in Fig. 9.

C. The oscillator strength and comparisons with experiment

In addition to the exciton energy levels, the oscillator
strength for the exciton recombination fx exhibits oscillations
as a function of B, which is shown for the 1S+ state in
Fig. 10(a). It has been already shown that increasing the
magnetic field leads to a decrease of R‖, and therefore fx

increases. When R‖(B) has a minimum, fx(B) achieves a
maximum. Variation of fx with B shown in Fig. 10(a) seems
to have the form fx = f x + f̃x , where f x = aB + b is a
linear function of B, and f̃ is the oscillatory residue. f x(B) is
displayed by the dashed line in Fig. 10(a), while f̃x = fx − f

is shown in Fig. 10(b). The amplitude of oscillations is defined
as the difference between the first maximum and the first
minimum of fx , which is denoted by Af in Fig. 10(b).
Furthermore, �B in Fig. 5(b) denotes the interval of magnetic
field between the first minimum and the first maximum [see
Figs. 10(a) and 10(b)]. Both Af and �B are used to compute
the relative amplitude of the first oscillation

δfx = Af /〈fx〉, (48)

where 〈fx〉 is the average value of fx in the interval �B. Due
to the population of higher exciton states, the oscillations of
IPL are considerably smeared out, even at a temperature as
low as 1 K [see Fig. 10(c)]. Such small oscillations might be
very difficult to observe experimentally, but they resemble the
AB oscillations of the photoluminescence intensity measured
in type-II InP/GaAs quantum dots.15
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FIG. 10. (Color online) (a) The oscillator strength for recom-
bination of the exciton ground state fx (solid curve) and the
linear fitting curve f x (dashed line) as function of magnetic field.
(b) Variation of the residue f̃x = fx − f x with magnetic field.
(c) The photoluminescence intensity IPL exhibits weak oscillations
as function of the magnetic field. The ring width equals W = 7 nm
and the height is h = 4 nm.

Figures 3(a)–3(c) illustrate that the magnitude of the AB
oscillations of the exciton ground-state energy depends on
the width of the analyzed type-I ring. As a matter of fact,
Fig. 11 shows that �x and δfx of the exciton ground state
are subject to changes when W varies. The maximum of the
�x(W ) curve equals 0.14 meV and is located at W = 6 nm,
while δfx exhibits a maximum of 6.5% which is located at
W = 5 nm. δfx is a well-defined property of the exciton
ground state in the whole explored range of W , from 2 to
22 nm. On the other hand, �x > 0 and E(1)

x vs B dependence
exhibits a second minimum only if the ring width is in the
range from 4 to 10 nm. Different domains of δfx and �x

imply that the optical excitonic AB effect could be present
in type-I (In,Ga)As semiconductor nanorings, even though
oscillations of the exciton ground-state level are not clearly
visible. Previous analysis of concentric 1D rings showed that
oscillations of the emission intensity for exciton recombination
arise due to periodical bright-to-dark transitions of the exciton
states;10 therefore δfx is much larger in concentric 1D rings. In
the analyzed nanorings, the electron and the hole are localized
in the same space; thus the exciton is only weakly polarized,
and no bright-to-dark transitions are found. 3D nanorings,

FIG. 11. (Color online) Variations of �x (blue circles) and δfx

(red squares) with the ring width.

therefore, offer different physics of the optical excitonic AB
effect than concentric 1D rings.10

There have been a few efforts to find excitonic Aharonov-
Bohm oscillations in the (In,Ga)As nanorings. The carefully
prepared experiment of Ref. 16 failed to find this effect for
neutral excitons, possibly because the ring width was large
(of the order of 30 nm). More recent work on excitons
in (In,Ga)As/GaAs nanorings produced a similar result,30

possibly due to large inhomogeneous broadening. The exci-
tonic AB effect in (In,Ga)As/GaAs nanorings was eventually
discovered very recently.11,12 The amplitude of the exciton
energy oscillations was a fraction of meV, which is similar to
what is found with our model. Furthermore, the shape of the
observed experimental dependence of the exciton ground-state
energy on B [see Fig. 2(a) in Ref. 11] is similar to our Fig. 3(b).
In order to explain the experimental data, an 1D ring model
was used in Ref. 11. This model was able to produce only
the regular oscillations of the exciton energy levels and the
oscillator strength. However, the measured dependence of the
photoluminescence intensity on magnetic field [see Fig. 2(c)
in Ref. 11] showed a similar trend as in our Fig. 10. We note
that the experiment presented in Ref. 11 is performed on an
ensemble of (In,Ga)As/GaAs nanorings, whereas a single ring
is considered in our theory. A qualitative similarity between
our calculations and the experimental results of Ref. 11
indicate that the dimensions of the fabricated nanorings do not
deviate much in the ensemble. The inhomogeneous broadening
due to the size distribution is small enough that the separate
peaks in the photoluminescence spectra arising from the two
classes of nanorings of different size are resolved. The results
of our theory compare favorably well with the measurements
on rings with average radius (R1 + R2)/2 = 11.6 nm in Ref. 11
which almost coincides with the average radius of the W = 7
nm wide rings analyzed in the present work.

A good qualitative agreement between our results and
measurements in Ref. 11 supports our previous conclusion that
a 3D modeling is needed to compute the exciton energy levels
and the oscillator strength for exciton recombination in type-I
nanorings. For much closer quantitative comparison with
experiment, the electron-hole exchange interaction should
be included in the model.31 Previous measurements on the
singly connected dots indicated that exciton energy level
splitting could be of the order of 0.1 meV,31 and is therefore
comparable to the amplitude of the computed excitonic AB
oscillations. Nevertheless, the exchange Hamiltonian does
not depend on magnetic field31 and thus could not affect
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our findings about oscillations of the exciton states with
magnetic field. More than electron-hole exchange interaction,
exciton energy levels are affected by accurate measurements
of dimensions and composition of nanorings. Interestingly
enough, Ref. 11 demonstrates that, depending on the ring
dimensions, oscillations of the photoluminescence intensity
can be superimposed on a decaying background. Different
behavior for two classes of nanorings was explained to arise
from the possible ring elongation and the piezoelectric fields.11

These effects are, however, not included in our model, and
taking them into account is beyond the scope of the present
study. We also note that the experiment presented in Ref. 11
dealt with an ensemble of nanorings, while in Ref. 12 excitons
in single type-I nanorings were investigated.

IV. CONCLUSION

We showed theoretically that strain has a beneficial influ-
ence on the excitonic Aharonov-Bohm effect. The Aharonov-
Bohm oscillations of the exciton ground-state energy are
found in an (In,Ga)As/GaAs nanoring, and they arise from
anticrossings between the two lowest energy L = 0 exciton
states. The anticrossings can be explained by an approximate
two-level Hamiltonian, which is derived by means of Löwdin
perturbation theory. Existence of the oscillations is found to
depend on the transfer integral due to the Coulomb interaction
potential t . When t is low, the energy gap between the
two lowest energy L = 0 exciton states becomes low, and
the Aharonov-Bohm oscillations of the exciton ground-state

energy become large. We found that strain is an important fac-
tor to establish these oscillations, by separating the hole from
the electron, which establishes a condition similar to that found
in type-II quantum dots. Furthermore, for nanorings of exper-
imental inner radius and height, the amplitude of the exciton
energy oscillations is found to depend on the ring width, which
is maximum in a 6 nm wide nanoring, whereas no oscillations
are found when the ring is wider than 10 nm. The amplitude
of the energy oscillations in the exciton ground state of an
(In,Ga)As/GaAs nanoring could be of the order of 0.1 meV,
whereas our calculations do not reveal the presence of exciton
energy oscillations in unstrained GaAs/(Al,Ga)As nanorings.
Furthermore, the optical excitonic Aharonov-Bohm effect is
present in (In,Ga)As/GaAs nanorings, but as oscillations in
the oscillator strength for exciton recombination around a
quasilinear dependence on the magnetic field. Such variations
are qualitatively similar to what has been recently observed
in Ref. 11. We infer that a proper design of type-I nanorings,
e.g., varying their dimensions or by strain engineering, could
lead to an enhancement of the excitonic Aharonov-Bohm
effect.
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4R. A. Römer and M. E. Raikh, Phys. Rev. B 62, 7045
(2000).

5M. Grochol, F. Grosse, and R. Zimmermann, Phys. Rev. B 74,
115416 (2006).

6B. Li and F. M. Peeters, Phys. Rev. B 83, 115448 (2011).
7R. Okuyama, M. Eto, and H. Hyuga, Phys. Rev. B 83, 195311
(2011).

8H. Hu, J. L. Zhu, D. J. Li, and J. J. Xiong, Phys. Rev. B 63, 195307
(2001).

9J. Song and S. E. Ulloa, Phys. Rev. B 63, 125302 (2001).
10A. O. Govorov, S. E. Ulloa, K. Karrai, and R. J. Warburton, Phys.

Rev. B 66, 081309 (2002).
11M. D. Teodoro, V. L. Campo Jr., V. Lopez-Richard, E. Marega Jr.,

G. E. Marques, Y. G. Gobato, F. Iikawa, M. J. S. P. Brasil, Z. Y.

AbuWaar, V. G. Dorogan, Yu. I. Mazur, M. Benamara, and G. J.
Salamo, Phys. Rev. Lett. 104, 086401 (2010).

12F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F. M. Peeters,
C. C. Bof Bufon, C. Deneke, Y. H. Chen, A. Rastelli, O. G. Schmidt,
and V. Zwiller, Phys. Rev. B 82, 075309 (2010).

13E. Ribeiro, A. O. Govorov, W. Carvalho Jr., and G. Medeiros-
Ribeiro, Phys. Rev. Lett. 92, 126402 (2004).

14I. L. Kuskovsky, W. MacDonald, A. O. Govorov, L. Muroukh,
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