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Resonant valley filtering of massive Dirac electrons
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Electrons in graphene, in addition to their spin, have two pseudospin degrees of freedom: sublattice and valley
pseudospin. Valleytronics uses the valley degree of freedom as a carrier of information similarly to the way
spintronics uses electron spin. We show how a double-barrier structure consisting of electric and vector potentials
can be used to filter massive Dirac electrons based on their valley index. We study the resonant transmission
through a finite number of barriers and we obtain the energy spectrum of a superlattice consisting of electric and
vector potentials. When a mass term is included, the energy bands and energy gaps at the K and K ′ points are
different and they can be tuned by changing the potential.
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I. INTRODUCTION

The realization of stable single-layer carbon crystals, called
graphene, has led to an intensive investigation of graphene’s
electronic properties.1,2 Charge carriers in a sheet of single-
layer graphene behave like “relativistic,” chiral massless
particles with a “light speed” equal to the Fermi velocity and
possess a gapless linear spectrum at the K and K ′ points.1,3

During recent decades there have been a lot of theoretical and
experimental attempts to use the spin of the electron as a carrier
of information.4 The large research interest in spintronics
originates from the fact that it promises to produce smaller,
more adaptable, and faster devices than today’s electronic
ones.5 Graphene, in addition to the spin of the electron, has two
more degrees of freedom: sublattice and valley pseudospin.
Valley-based electronics, also known as valleytronics, uses the
valley degree of freedom as a carrier of information similarly
to the way spintronics uses electron spin.

Valleytronics is useful when the valley-encoded informa-
tion is preserved over long distances. Defects in the hexagonal
lattice can cause intervalley scattering and flip the valley
state.6,7 This can occur around graphene edges or adatoms that
stick to the surface of graphene. However, in order to scatter
an electron from the K valley to the K ′ valley a large transfer
of momentum is needed. Typical disorder and Coulomb-type
scattering is unable to provide this momentum, and in such a
case the valley pseudospin is a conserved quantum number
in electronic transport. This allows one to use the valley
pseudospin as a carrier of information.

It was shown recently that graphene nanoribbons with
zigzag edges8,9 can be used as a valley filter. Another promising
possibility to control the valley index of electrons is by using
a line of defects.10 These can be formed in graphene when
it is grown on a nickel substrate or by using so-called mass
barriers that can be created by, e.g., a proper arrangement of
dopants in the graphene sheet.11–13 Another way to control
the valley polarization is by using local strain in graphene,
which induces an effective inhomogeneous magnetic field
with opposite signs in the K and K ′ valleys.14–18 Recently,
it was shown that a mass term can be induced by certain
substrates such as hexagonal boron nitride (h-BN) or by
electron-electron interactions which are also able to control
the valley pseudospin.19,20

Here we study a double Kronig-Penney (KP) model in
graphene, consisting of a series of electric and vector potential

barriers where we include a mass term as induced by,
e.g., a substrate. The vector potential can be induced using
ferromagnetic stripes on top of a graphene layer but such
that there is no electrical contact between the graphene and
these stripes. When one magnetizes the stripes along the x

direction (Fig. 1) by, e.g., applying an in-plane magnetic
field, the charge carriers in the graphene layer experience
an inhomogeneous magnetic field profile. This profile can
be well approximated21 by 2B0z0h/d(x2 + z2

0) on one edge
of the stripe and by −2B0z0h/(x2 + z2

0) on the other, where
z0 is the distance between the two-dimensional electron gas
(2DEG) and the stripe, and d and h the width and height of the
stripe (see Fig. 1). The resulting magnetic field profile will be
modeled by two magnetic δ functions of height 2πB0h. Such
ferromagnetic stripes have been deposited on top of a 2DEG in
a semiconductor heterostructure as described in Ref. 22. This
magnetic stripe can also be used as a top gate in order to create
an electric potential barrier which will be modeled by a square
barrier. These simplified shapes for the electric and magnetic
field profiles will allow us to present analytical results. More
realistic shapes will not influence the qualitative results of our
work.

The model presented in this paper is similar to a recent
proposal23 where a single ferromagnetic stripe on top of a
graphene layer was shown to act as a valley filter for massive
Dirac electrons. In our case the barrier structure consists of two
ferromagnetic stripes acting as a resonant tunneling structure.
We investigate both symmetric and antisymmetric functions of
the electric and vector potentials and we show how different
potential symmetries affect the transmission of the electrons in
the K and K ′ valleys. Furthermore, a superlattice consisting
of such a barrier structure is considered. We show that the
band structure of the superlattice is different for K and K ′
valleys and most importantly that the height of the band
gap is valley dependent and can be tuned by adjusting the
potential.

The paper is organized as follows. In Sec. II we present
the model and analytical tools that were used. In Sec. III
we evaluate the transmission for the combined electric and
vector potential barrier. In Sec. IV we expand the analysis to
include multiple unit cells. In Sec. V we consider a superlattice
of such barriers and we evaluate the valley-dependent band
structure and band gap. Our concluding remarks are given in
Sec. VI.
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FIG. 1. (Color online) (a) Layout of the system: a ferromagnetic
stripe on top of a graphene sheet and a hexagonal boron nitride (hBN)
layer as a substrate. (b) Perpendicular magnetic field component and
corresponding vector potential at a distance z0 from the stripe in the
case of parallel magnetization.

II. MODEL

The Dirac Hamiltonian for a massive electron in the
presence of an external electric and vector potential is given
by24

H = V + τmv2
F σz + vF (p + eA) · σ , (1)

where p = −ih̄(∂x,∂y) is the momentum operator, σz and σ =
(σx,σy) are the Pauli matrices, and τ = ±1 is the valley index.
The behavior of the electron is described by the equation

H�τ = E�τ . (2)

The equation can be simplified by using dimensionless
units via the following substitutions: W → lW , l = 1 nm,
E → E0E, V → E0V , E0 = h̄vF / l ≈ 658 meV, A(x) →
(B0l/β)A(x), β = eB0l

2/h̄, and μ = mv2
F /E0. We choose the

Landau gauge in which A = (0,A(x)). Since py commutes
with the Hamiltonian of Eq. (1) then py is a good quantum
number, and due to the translational invariance along the y

direction the solutions have the form

�τ (x,y) = eikyyψτ (x). (3)

After substituting Eq. (3) into Eq. (2), we find(
V + τμ −i∂x − i(ky + A)

−i∂x + i(ky + A) V − τμ

)
ψτ = Eψτ . (4)

In order to find the energy spectrum for the K valley we use
τ → 1 and ky → +ky , while for the K ′ valley we replace
τ → −1 and ky → −ky .

III. BARRIER STRUCTURE

Let us first consider a single barrier consisting of both
electric and vector potentials given by

V (x) = Vb[
(x) − 
(x − Wb)], (5)

A(x) = Ab[
(x) − 
(x − Wb)], (6)

where 
 is the step function, Vb and Ab are constant values of
the electric and vector potentials, and Wb is the width of the
barrier.

The incident wave function before the barrier is given by

ψin(x) =
(

eik0x + re−ik0x

f0e
i(k0x+θ0) − rf0e

−i(k0x+θ0)

)
, (7)

and the transmitted wave function after the barrier is

ψout(x) =
(

teik0x

tf0e
i(k0x+θ0)

)
, (8)

where k0 =
√

E2 − μ2 − k2
y is the wave vector, with θ0 =

arctan(ky/k0) and f0 =
√

E2 − μ2/(E + τμ). For a zero-
mass term μ = 0 the f0 component reduces to sgn(E).

Inside the barrier we have the wave function

ψb(x) =
(

Aeikbx + Be−ikbx

Afbe
i(kbx+θb) − Bfbe

−i(kbx+θb)

)
, (9)

where kb = √
(E − Vb)2 − μ2 − (ky + Ab)2 is the wave vec-

tor, with the angle θb = arctan[(ky + Ab)/kb] and the compo-
nent fb =

√
(E − Vb)2 − μ2/(E − Vb + τμ).

By requiring continuity of the wave function at the barrier
boundaries, we find the relation between the wave function
coefficients before and after the barrier. This relation can be
expressed as a 2 × 2 transfer matrix,(

1

r

)
= M

(
t

0

)
, (10)

where the matrix elements are given by

M11 = M∗
22

= eik0Wb

[
cos(kbWb) + i sin(kbWb)

(
sin θ0 sin θb − λ

cos θ0 cos θb

)]
,

(11)

M12 = M∗
21 = e−ik0Wbe−iθ0 sin(kbWb)

cos θ0 cos θb

× [λ sin θ0 − sin θb + iτν cos θ0], (12)

where

λ = E(E − Vb) − μ2√
E2 − μ2

√
(E − Vb)2 − μ2

, (13)

ν = μVb√
E2 − μ2

√
(E − Vb)2 − μ2

. (14)

The transmission and reflection coefficients can be found from
the transfer matrix elements as t = 1/M11 and r = M12/M11.

Notice that, unlike M11, the element M12 is valley de-
pendent. To investigate further, we can rewrite the complex
elements of the transfer matrix to separate the amplitude and
phase as M11 = m11e

iϕ11 and M12 = m12e
iϕ12 . For M11 we find

m11 =
√

cos2(kbWb) + sin2(kbWb)

(
sin θ0 sin θb − λ

cos θ0 cos θb

)
, (15)

ϕ11 = k0Wb + arctan

(
sin θ0 sin θb − λ

cos θ0 cos θb

tan(kbWb)

)
. (16)
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FIG. 2. Double-barrier structure with electric and vector potentials.

In this case the transmission coefficient can be written as t =
|t |eiϕt . Both the transmission amplitude |t | = 1/m11 and the
phase ϕt = −ϕ11 are independent of τ . Next we look at M12,

m12 = sin(kbWb)

cos θ0 cos θb

√
(λ sin θ0 − sin θb)2 + ν2 cos2 θ0, (17)

ϕ12 = −k0Wb − θ0 + arctan

(
τν cos θ0

λ sin θ0 − sin θb

)
. (18)

The reflection coefficient can be written as r = |r|eiϕr , where
|r| = m12/m11 and ϕr = ϕ12 − ϕ11. The amplitude m12 no
longer depends on τ because τ 2 = 1. This means that the
reflection probability R = |r|2 is also independent of the valley
index. However, the phase ϕ12 is still valley dependent.

Electrons that are reflected at this barrier will have a slight
phase difference depending on their valley index. This does not
in any way affect the transmission and reflection probabilities
for the single barrier, but, as we will see later, it has a significant
impact on the resonance peaks of a double-barrier structure.

We now consider a structure that consists of two barriers as
shown in Fig. 2. The left (right) barrier consists of an electric
potential VL (VR) and a vector potential AL (AR). The two
barriers are separated by a distance WM .

The total transfer matrix MT for the double-barrier structure
is defined as(

1

r

)
= MT

(
t

0

)
= MLMMMR

(
t

0

)
, (19)

where ML and MR are the transfer matrices of the left and right
barriers, respectively, and MM models the barrier spacing. The
transfer matrix elements for the individual barriers are the same
as the previously derived elements in Eqs. (11) and (12) with
the barrier index replaced as b → L and b → R for the left and
right barriers, respectively. For the middle region we define the
propagation matrix MM to connect the coefficients of the two
barriers,

MM =
(

e−ik0WM 0

0 eik0WM

)
. (20)

The transmission coefficient of the double-barrier structure
is given by t = 1/MT 11, so we need to find only the MT 11

element of the total transfer matrix from Eq. (19),

M11 = ML11MR11e
−ikWM + ML12MR21e

ikWM . (21)

We can substitute the complex matrix elements as Mij =
mije

iφij in Eq. (21) and derive the total transmission proba-
bility,

T = 1

|M11|2 = TLTR

1 + RLRR + 2
√

RLRR cos φτ

, (22)

where TL (TR) and RL (RR) are the transmission and reflection
probabilities of the left (right) barriers, respectively, and φτ is
the total phase factor,

φτ = 2k0WM − ϕL11 − ϕR11 + ϕL12 − ϕR12, (23)

where ϕL11 and ϕL12 (ϕR11 and ϕR12) are the phase factors of
the left (right) barriers given by Eqs. (16) and (18). Because
of the phase factor φτ resonant transmission peaks will occur
when

φτ = (2n + 1)π, n = 0,1, . . . . (24)

The transmission maximum is thus

Tmax = TLTR

(1 − √
RLRR)2

. (25)

If the transmission probabilities TR and TL are small (as they
are here), the reflection probabilities in the denominator may
be expanded as

1 −
√

RLRR ≈ 1 −
(

1 − TL

2

)(
1 − TR

2

)
≈ TL + TR

2
,

(26)

and the total transmission probability is

Tmax ≈ 4TLTR

(TL + TR)2
. (27)

The minimum transmission of resonance occurs when the
cosine function in Eq. (22) is unity, i.e., when φτ = 2nπ .

The single-barrier transmission and reflection probabilities
for the left and right barriers are completely independent of
the valley index. As shown earlier, the phase ϕ12 is valley
dependent, and as a consequence the resonant peaks of the
double-barrier structure will occur at different energies for the
two valleys.

For the valley-dependent phase difference ϕL12 − ϕR12, we
find

ϕL12 − ϕR12 = −k0(WL − WR) + arctan(γτω), (28)

where

γτ = τμ(VLAR − VRAL), (29)

ω = k0(μ2 − E2)

k0μ2VLVR + QLQR

, (30)

Qi = EViky + (E2 − μ2)(ky + Ai). (31)

The valley-index-dependent factor is γτ and the system must
satisfy the condition γτ �= 0 in order to show any valley-index-
dependent behavior,

μ(VLAR − VRAL) �= 0. (32)
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This implies that the minimum requirement is a nonzero-mass
term μ. Furthermore, both an electric and a vector potential
are required, but this condition (VLAR − VRAL �= 0) is more
flexible with regard to the individual potential values. The
system must consist of two barriers with different electric
and/or vector potentials. In the case of a single barrier, i.e.,
VR = 0 and AR = 0, condition (32) cannot be fulfilled. If both
a nonzero-mass term and two barriers are present, the condition
reduces to VLAR �= VRAL. Notice that the condition is still
satisfied if one barrier has only an electric potential (VL = V ,
AL = 0), while the other has only a vector potential (VR = 0,
AR = A).

Considering the result of the phase difference Eq. (28), we
can rewrite Eq. (23) as

φτ = ϕ0 + τϕ1, (33)

where ϕ0 and τϕ1 are the valley-index-independent and -
dependent phase factors, respectively,

ϕ0 = 2k0WM − ϕL11 − ϕR11 − k0(WL − WR), (34)

ϕ1 = sgn(γω)| arctan(γω)|, (35)

γ = μ(VLAR − VRAL). (36)

This means that the phase factor in the K valley will be
φK = ϕ0 + ϕ1, while the K ′ valley will have φK ′ = ϕ0 − ϕ1.
Considering that cos φτ is a symmetric function, we need to
analyze the absolute value |φτ |. The phase difference between
K and K ′ is thus

�φ = |φK | − |φK ′ |. (37)

If ϕ0 > ϕ1, we find

�φ = ϕ0 + ϕ1 − (ϕ0 − ϕ1) = 2ϕ1. (38)

On the other hand, if ϕ0 < ϕ1,

�φ = ϕ0 + ϕ1 − (ϕ1 − ϕ0) = 2ϕ0. (39)

Because of this, we expect to see two different resonance
domains with different peak distributions.

A. Conductance and polarization

For a given Fermi energy EF , the valley-related zero-
temperature conductance is calculated from

Gτ = G0

∫ ky+

ky−
Tτ (EF ,ky), (40)

where G0 = e2Ly/πh and ky± = ±√
E2

F −μ2. The total conduc-
tance is G = G+ + G−, with the valley polarization defined
as

P = G+ − G−
G

. (41)

B. Numerical results

The transmission probability is calculated numerically
based on Eq. (22). We consider two cases. First, as shown
in Fig. 3(c), we take the electric potential of the two barriers as
symmetric, while the vector potential is taken antisymmetric.

VL VR

AL
AR

V(x)

0

0

A(x)

FIG. 3. (Color online) Transmission probability for the (a) K and
(b) K ′ valleys. (c) The barrier structure consisting of a symmetric
electric potential and an antisymmetric vector potential. (d) The
difference TK − TK ′ . The solid black line shows the energy dispersion
of a free massive electron in bulk graphene, E = ±√

μ2+k2
y , and

the dashed lines show the dispersion inside the barriers, E =
Vi ± √

μ2 + (ky + Ai)2. The parameters are VL = VR = 0.2, AL =
−AR = 0.1, μ = 0.0425, WL = WR = 10, and WM = 30.

The transmission is shown in Figs. 3(a) and 3(b) for K and K ′,
respectively. Transmission resonances are found at different
energy values for K and K ′ as described by Eq. (22). In
order to emphasize the difference, we subtracted the electron
transmission in the two valleys and plotted the result in
Fig. 3(d). Notice that the difference is quite large and changes
between −1 and 1, which means that for some energy values,
while the electron in one valley is completely transmitted,
for the same energy we have complete reflection in the other
valley.

We plotted the transmission as a function of the mass term
μ and energy in Fig. 4. We can see that the two valleys have
exactly opposite behavior with regard to the sign of the mass
term. As the value of the mass term is increased, the energy
values of the resonant peaks are lowered for one valley and
increased in the other. A notable exception is the first resonant
peak, which behaves differently and vanishes into the band gap.
This is a special case present in the domain where ϕ0 < ϕ1, as
discussed earlier.

We evaluated the conductance and polarization using
Eqs. (40) and (41). The results are shown in Fig. 5 where
pronounced valley polarization is found for certain energies.
High polarization peaks are present at lower values of Fermi
energy, but as the energy is increased, the polarization becomes
lower and eventually converges to zero. We also plotted
the conductance as a function of the electric potential in
Fig. 6, where both positive and negative polarization peaks
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FIG. 4. (Color online) Transmission probability at ky = 0 as a
function of the mass term μ and the energy for the (a) K and
(b) K ′ valleys. (c) The difference TK − TK ′ . The solid black line
shows E = μ. The barrier structure is the same as in Fig. 3.

are present. This shows that the valley filtering properties can
easily be switched by adjusting the electric potential.

Next, we consider the case where the electric potential
is antisymmetric, while the vector potential is symmetric as
shown in Fig. 7(c). The transmission in this case is plotted
in Figs. 7(a) and 7(b). The difference between the two
valleys is most apparent when moving from ky < 0 to ky > 0,
but this is expected because of the ky → −ky substitution
when switching the valleys. The more important results are
the energy-dependent transmission differences. They are a
consequence of the valley-index-dependent resonances that
were introduced with the mass term in the double-barrier
structure. We plotted the transmission as a function of the
mass term μ and ky at a fixed energy in Fig. 8. As in the

FIG. 5. (Color online) Total zero-temperature conductance as a
function of Fermi energy for the same barrier structure as in Fig. 3.
The inset shows the valley polarization.

FIG. 6. (Color online) Total zero-temperature conductance as a
function of the electric potential at Fermi energy EF = 0.15. The
barrier structure is the same as in Fig. 3, but with a variable electric
potential VL = VR = V . The inset shows the valley polarization.

previous case, we see that the valleys have opposite behavior
with regard to the sign of the mass term.

The conductance and polarization are plotted in Fig. 9.
Compared with the previous case, the conductance is generally
larger, but the valley polarization is much less pronounced.
As previously, it converges to zero for high energy values.
Conductance is plotted as a function of the electric potential
in Fig. 10. In this case the polarization is antisymmetric

VL

VR

AL AR

V(x)

0

0

A(x)

FIG. 7. (Color online) Transmission probability for the (a) K and
(b) K ′ valleys. (c) The barrier structure consisting of a symmetric
vector potential and an antisymmetric electric potential. (d) The
difference TK − TK ′ . The solid black line shows the energy dispersion
of a free massive electron in bulk graphene, E = ±√

μ2+k2
y , and

the dashed lines show the dispersion inside the barriers, E =
Vi ± √

μ2 + (ky + Ai)2. The parameters are VL = −VR = 0.2, AL =
AR = 0.1, μ = 0.0425, WL = WR = 10, and WM = 30.

115431-5



MOLDOVAN, RAMEZANI MASIR, COVACI, AND PEETERS PHYSICAL REVIEW B 86, 115431 (2012)

FIG. 8. (Color online) Transmission probability at E = 0.28 as a
function of the mass term μ and ky for the (a) K and (b) K ′ valleys.
(c) The difference TK − TK ′ . The solid black line shows E =√

μ2+k2
y .

The barrier structure is the same as in Fig. 7.

with respect to V = 0, which means that the type of valley
polarization can be switched by changing the sign of the
electric potential.

Finally, it is also possible to realize valley-dependent
transmission if the left barrier has only an electric potential,
while the right barrier has only a vector potential (VL =
V,VR = 0,AL = 0,AR = A). However, while this configura-
tion is interesting, there is no special advantage to it. The first
case, with a symmetric electric potential and an antisymmetric
vector potential, shows the largest energy-dependent valley
polarization and therefore this is the only configuration that
will be discussed from now on.

We also consider the impact of the length of the spacing
between barriers WM on the transmission. Figures 11(a)

FIG. 9. (Color online) Total zero-temperature conductance as a
function of Fermi energy for the same barrier structure as in Fig. 7.
The inset shows the valley polarization.

FIG. 10. (Color online) Total zero-temperature conductance as a
function of the electric potential at Fermi energy EF = 0.08. The
barrier structure is the same as in Fig. 7, but with a variable electric
potential VL = VR = V . The inset shows the valley polarization.

and 11(b) show energy values of high transmission for the
K and K ′ valleys and Fig. 11(d) shows the difference in
transmission between the two valleys. The first transmission
peak of the K ′ valley in Fig. 11(b) vanishes, similarly to the
behavior shown in Fig. 4(b). In this case the K ′ valley exhibits
resonances from both ϕ0 < ϕ1 and ϕ0 > ϕ1 domains, while in
the K valley we always have ϕ0 > ϕ1.

The transmission peaks in Fig. 11 are described by Eq. (24).
For large energy and small WM , their positions are valley

VL VR

AL
AR

V(x)

0

0

A(x)

WM

FIG. 11. (Color online) Transmission probability at ky = 0 as a
function of energy and barrier spacing WM for the (a) K and (b) K ′

valleys. (c) The barrier structure consisting of a symmetric electric
potential and an antisymmetric vector potential. (d) The difference
TK − TK ′ . The parameters are VL = VR = 0.2, AL = −AR = 0.1,
μ = 0.0425, and WL = WR = 10.
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dependent and we can approximate them by,

En =
√

μ2 +
(

1

2
E0 + 1

2

√
E2

0 + τEτ

)2

, (42)

where

E0 = (2n + 1)π

2Wt

, (43)

Eτ = 2μ

Wt

(
VL

AL

− VR

AR

)
, (44)

Wt = WM + 1

2
(WL + WR). (45)

On the other hand, if WM is large, the peak positions are no
longer valley dependent and Eq. (24) can be approximated by

En =
√

μ2 +
(

(2n + 1)π

2WM

)2

, (46)

which agrees with the asymptotic behavior shown in
Figs. 11(a) and 11(b).

IV. N UNIT CELLS

Next, we repeat the previous barrier structure N times.
We add a second spacing region WS to separate unit cells as
shown in Fig. 12. The total length of one unit cell is W =
WL + WM + WR + WS .

We will define a slightly different formalism than in the
previous section. Instead of a transfer matrix that connects
wave function coefficients in the different regions, we will
define a characteristic matrix that connects the wave functions
on the two sides of a single region,25

ψi(x) = Miψi(x + Wi). (47)

The characteristic matrix for a single region is given by

Mi = 1

cos θi

(
cos (kiWi + θi) −if −1

i sin kiWi

−i fi sin kiWi cos (kiWi − θi)

)
, (48)

where i = L,R,M,S and the potentials in the spacing regions
are zero: VM = VS = 0 and AM = AS = 0. The characteristic
matrix for the whole structure is obtained by multiplying the

VL VLVVVR

AL AL

WL WR WSWM

AR

V(x)

0

0

A(x)

Ab x

FIG. 12. Double-barrier unit cell with electric and vector poten-
tials.

individual matrices in the order in which they appear in the
structure, M = ∏

i Mi .
For N unit cells the total matrix becomes MN and we use a

result from the theory of matrices, according to which the N th
power of a unimodular matrix M is (uN (χ ) ≡ uN )

MN =
(

M11uN−1 − uN−2 M12uN−1

M21uN−1 M22uN−1 − uN−2

)
, (49)

with χ = 1
2 TrM and uN the Chebyshev polynomials of the

second kind:

uN (χ ) = sin[(N + 1)ζ ]

sin ζ
, (50)

where ζ is the Bloch phase given by ζ = arccos(χ ).25

The total characteristic matrix gives us the relation between
the wave functions just before and after the barrier structure,

ψin(0) = MNψout(NW ). (51)

The transmission coefficient can be found by solving the
system given by Eq. (51),

1 + r = teik0W (MN11 + MN12f0e
iθ0 ), (52)

f0(eiθ0 − re−iθ0 ) = teik0W (MN21 + MN22f0e
iθ0 ), (53)

which leads to

t = 2e−ik0W cos θ0

MN11e−iθ0 + MN12f0 + MN21f
−1
0 + MN22eiθ0

. (54)

A. Numerical results

As an example, we consider a system consisting of N = 5
unit cells. The numerical results of transmission and energy
states are presented in Figs. 13(a) and 13(b) for the K and K ′
valleys, respectively. The valley differences are not diminished
with the addition of more barriers. Both the transmission
and bound states are valley dependent, which suggests that
a superlattice of this kind of system will exhibit different
bands for K and K ′. We also plot the transmission probability
as a function of the energy E and the unit cell spacing WS .

FIG. 13. (Color online) Transmission probability and bound
states (blue lines) for a system with five unit cells for the (a) K

and (b) K ′ valleys. The solid black line shows the energy dispersion
of a free massive electron in bulk graphene, E = ±√

μ2+k2
y , and

the dashed lines show the dispersion inside the barriers, E =
Vi ± √

μ2 + (ky + Ai)2. The parameters are VL = VR = 0.2, AL =
−AR = 0.1, μ = 0.0425, WL = WR = WM = 10, and WS = 5.
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VL VLVVVR

AL AL
AR

V(x)

0

0

A(x)

WS

FIG. 14. (Color online) Transmission probability at ky = 0 as a
function of energy and the unit cell spacing WS for the (a) K and
(b) K ′ valleys. (c) The barrier structure consisting of a symmetric
electric potential and an antisymmetric vector potential. (d) The
difference TK − TK ′ . The parameters are VL = VR = 0.2, AL =
−AR = 0.1, μ = 0.0425, and WL = WM = WR = 10.

As shown in Figs. 14(a), 14(b), and 14(d) with an increased
number of barriers the difference between the transmission
in K and that in K ′ is more pronounced as compared to the
single-cell case (Fig. 11). The resonances are split into multiple
peaks due to the presence of the additional unit cells. When
one extra unit cell is added, the new electron wave function can
be written as a symmetric or antisymmetric combination and
each transmission peak splits into two. As we add N unit cells
there are N eigenstates that arise from linear combinations of
the N states of the independent unit cells, and as a result the
maximum of the transmission will split into N peaks (e.g., in
Fig. 14 for N = 5 we see that the resonances are split into five
peaks). As shown in Figs. 14(a) and 14(b), for some specific
energies we have almost straight lines of full transmission.
These energies correspond with the positions of maximum
transmission shown in Figs. 7(a) and 7(b) for ky = 0, and they
are given by full resonant transmission peaks described by
Eq. (24).

V. SUPERLATTICE

Next, we take the same unit cell as described in the
previous section, but consider the limit of N → ∞ for a
superlattice. The spectrum of the superlattice is obtained from
the characteristic matrix of the unit cell as

cos(kxW ) = 1
2 Tr(M) = 1

2 (M11 + M22). (55)

Now it is no longer meaningful to talk about transmission.
Instead, we will study the energy band structure, the density
of states, and the conductivity.

If the spacing between unit cells, WS , is much smaller than
the width of the other regions, i.e., WS 
 WL,WM,WR , the
characteristic matrix for the cell spacing region can be replaced
by an identity matrix. We will keep WM proportional to WL

and WR . The reason for this will be shown later. After making
the substitution MS → I and calculating the matrix for the
whole structure, the matrix elements are used in Eq. (55) to
derive the implicit relation to obtain the energy spectrum of
the superlattice:

cos(kxW ) = cos αL cos αM cos αR + γτ sin aL sin αM sin αR

+�L,M,R + �M,R,L + �R,L,M, (56)

where

γτ = τμ

kLkMkR

[ALVM,R + AMVR,L + ARVL,M ], (57)

�i,j,k = −1

kikj

[εiεj − μ2 − κiκj ] sin αi sin αj cos αk, (58)

and αi = kiWi , Vi,j = Vi − Vj , εi = E − Vi , and κi = ky +
Ai .

The spectrum of the superlattice depends on the valley index
through γτ . This valley-dependent factor is present only if the
superlattice has at least three potential regions. If we remove a
region, e.g., WM = 0, we have sin αM = 0 and γτ is no longer
a factor in the energy dispersion.

FIG. 15. (Color online) Superlattice spectrum for the (a) K and
(b) K ′ valleys. The parameters are VL = VR = 0.16, AL = −AR =
0.1, μ = 0.0425, WL = WM = WR = 10, and WS = 2.

115431-8



RESONANT VALLEY FILTERING OF MASSIVE DIRAC . . . PHYSICAL REVIEW B 86, 115431 (2012)

FIG. 16. (Color online) Superlattice spectrum for the (a) K and
(b) K ′ valleys. The parameters are VL = VR = 0.29, AL = −AR =
0.1, μ = 0.0425, WL = WM = WR = 10, and WS = 2.

A mass term is required in order to have a nonzero γτ . The
valley-dependent behavior of the superlattice also depends on
the specific electric and vector potential values in the three
regions. This potential relation is a bit more complicated, but
Eq. (57) can also be represented in a determinant form,

γτ = τ

kxLkxMkxR

∣∣∣∣∣∣∣
AL −AM AR

VL VM VR

μ μ μ

∣∣∣∣∣∣∣. (59)

If all the values in a row or column of the determinant are zero,
then the result is zero.

The previously derived relations are valid for any general
case of three potentials; however, we are interested in the
specific case where the middle region corresponds to the space
between two barriers. Therefore, in that region, the electric and
vector potentials are zero: VM = 0 and AM = 0. This will not
remove γτ completely because there is still a constant mass
term in the second region. In this simpler case, the valley factor
becomes

γτ = τμ

kLkMkR

(VLAR − VRAL), (60)

which is similar to the valley condition Eq. (29) of the previ-
ously described barrier structure. We will consider a symmetric
electric potential VL = VR = V with an asymmetric vector

potential AL = −AR = A. In that case the valley-dependent
factor becomes simply

γτ = −2τμ

kLkMkR

V A. (61)

It is important to mention that in all cases the valley-
dependent behavior requires a real external magnetic field.
The same could not be achieved with a strain-generated field.
The sign of the strain-induced vector potential is different for
each valley and it cancels out the previous valley differences.
This is easy to show from the simplified valley factor given
by Eq. (60). In the case of a strain-induced vector potential
the substitution Ai → τAi would have to be introduced. That
leads to

γτ = τ 2μ

kxLkxMkxR

(VLAR − VRAL), (62)

and because τ 2 = 1 the valley index vanishes from the energy
dispersion relation. The same conclusion is true for the general
three-region valley factor from Eq. (57).

A. Density of states

The number of k states per unit energy is given by

D(E) = 1

(2π )2

∑
n

∫
dkxdky δ(E − En(kx,ky)). (63)

FIG. 17. (Color online) Dispersion relation (E vs kx) for ky = 0
for the (a) K and (b) K ′ valleys with VL = VR = 0.16 and for the
(c) K and (d) K ′ valleys with VL = VR = 0.29. The parameters
are AL = −AR = 0.1, μ = 0.0425, WL = WM = WR = 10, and
WS = 2.
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FIG. 18. (Color online) Band gap versus the electric and vector
potentials. (a) The electric potential is tuned so that VL = VR = V ,
while the vector potential is taken constant with AL = −AR = 0.1.
(b) The vector potential is tuned so that AL = −AR = A, while the
vector potential is taken constant with VL = VR = 0.2. The rest of
the superlattice parameters are the same for (a) and (b): μ = 0.0425,
WL = WM = WR = 10, and WS = 2.

To calculate the density of states (DOS) numerically we
introduce a Gaussian broadening,

δ(E − En(kx,ky)) → 1

�
√

π
exp

[
− [E − En(kx,ky)]2

�2

]
.

(64)

B. Conductivity

For elastic scattering the diffusive conductivity σij is given
by

σij = e2

4π2kBT

∑
n

∫
dkxdkyτm vnivnjfnk(1 − fnk). (65)

Here T is the temperature, vni = ∂En/∂ki the electron
velocity, fnk the Fermi-Dirac function, and τm the momentum
relaxation time. For low temperatures we assume that τm is
approximately constant, evaluated at the Fermi level (τm ≈
τF ), and replace the product fnk(1 − fnk)/kBT by the delta
function δ(E − En(kx,ky)).

S

FIG. 19. (Color online) Band gap versus the length of the unit
cell spacing WS for the energy spectrum of the K and K ′ valleys.
The superlattice parameters are VL = VR = 0.16, AL = −AR = 0.1,
μ = 0.0425, and WL = WM = WR = 10.

C. Numerical results

The energy bands of the superlattice are calculated nu-
merically based on the total transfer matrix and the energy
dispersion relation Eq. (55). As mentioned previously, we
will consider only a symmetric electric potential with an
antisymmetric vector potential. The different band structures
for the K and K ′ valleys with this kind of potential function
are shown in Figs. 15 and 16 for different values of the electric
potential. In Fig. 17 we plotted the energy dispersion versus
kx with a fixed ky = 0. In both cases the dispersion relation
is plotted for two values of the electric potential in order to
show the large influence of the potential on the superlattice
band structure.

FIG. 20. (Color online) (a) Density of states and (b) and (c)
conductivities vs Fermi energy for K and K ′ valleys. The parameters
are VL = VR = 0.29, AL = −AR = 0.1, μ = 0.0425, WL = WM =
WR = 10, and WS = 2.
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Along with the general band structure, the band gap depends
on the valley index. Its value can be tuned by adjusting the
electric and vector potentials, as shown in Fig. 18. At the point
where either the electric or the vector potential is zero, the band
gap is identical for both valleys, which is expected given the
valley factor γτ (61). The energy gap functions for the valleys
are reversed with regard to the zero potential point:

Eg(τ,V ,A) = Eg(−τ,−V,A), (66)

Eg(τ,V ,A) = Eg(−τ,V ,−A), (67)

which is also obvious from the valley factor expression.
It is possible to adjust the values so that one valley has a

narrow band gap, while the other has a wide one, as is shown
in Fig. 16. This case depicts the band structure at the point
V = 0.29 from the gap function in Fig. 18. It is particularly
convenient that the valley behavior of the superlattice can
easily be reversed by flipping the electric potential from V

to −V or A to −A.
The energy spectrum and band gap of the superlattice also

depend on the spacing between the barriers. This dependence
is plotted in Fig. 19. For WS = 10 there is no difference
between K and K ′. At that point the widths of all four
regions are identical, which makes both the electric and vector
potential functions symmetric from the point of view of the
entire superlattice. Note that the potential functions are not
symmetric locally in a single unit cell, but only globally.
On the other hand, the valley difference is most pronounced
at WS = 0, because we have a globally symmetric electric
potential with a globally antisymmetric vector potential.

The numerical results for the DOS and the conductivities
σxx and σyy for V = 0.29 are plotted in Fig. 20. These results
show that the valley differences are localized to energy values
around the band gap. The largest valley differences are present
at the center of the band structure, while at energy values
further away from the band gap K and K ′ converge to the same
values, in both the cases of the DOS and the conductivities. It
should be noted that σyy � σxx and that σxx goes to zero
at energy values further away from the band gap, which
means that the electrons have zero group velocity in the x

direction.

VI. CONCLUSIONS

We proposed a model consisting of electric and vector
potentials for a massive Dirac electron in graphene. The model

is essentially a series of very high and very narrow magnetic
δ-function barriers alternating in signs, plus electric potential
barriers. The transmission through such a series of barriers
was obtained using transfer matrix methods.

First, we showed that although a single barrier presents
the same transmission and reflection probabilities regardless
of the valley index, electrons from different valleys are in
fact reflected with a different phase. When a second barrier is
added, this valley phase difference will affect the resonant
peaks that occur between the two barriers. We show that
the transmission probability for this double-barrier structure
is very different for electrons in different Dirac points. This
kind of structure can be formed by using two ferromagnetic
stripes (with in-plane magnetization), which can also be
used as electric gates. A mass term must also be present in
order that this structure acts as a valley filter. A gap in the
electronic spectrum can be induced either by a substrate or by
electron-electron interactions.

We considered a few unit cells (five) and showed that the
valley filtering behavior of the structure is robust. This enabled
us to extend the calculation to a superlattice for which the unit
cell corresponds to two stripe ferromagnetic gates. We show
that depending on the configuration of the magnetization and
electric potential of the gates, different band structures appear
for electrons at the two Dirac points. The generated band gap
is also valley dependent and can be easily tuned by changing
the electric potential or the magnetization. Even more, the
behavior of electrons in the two valleys can be switched by
flipping the sign of either potential (V → −V or A → −A).

From an experimental point of view the valley filters and
polarizers could be easily realized as superlattices (or even
finite numbers of unit cells) made of ferromagnetic stripes
all magnetized in plane and in the same direction but with
alternating electric potentials. Alternatively, although less
feasible experimentally, one can also obtain valley filtering
behavior for alternating magnetization but with the same
electric potentials. An essential ingredient is the presence of
a finite gap in the electronic spectrum, which is nowadays
routinely achieved in graphene deposited on BN substrates.
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