PHYSICAL REVIEW B 83, 115448 (2011)

Tunable optical Aharonov-Bohm effect in a semiconductor quantum ring
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By applying an electric field perpendicular to a semiconductor quantum ring we show that it is possible to
modify the single particle wave function between quantum dot (QD)-like and ring-like. The constraints on the
geometrical parameters of the quantum ring to realize such a transition are derived. With such a perpendicular
electric field we are able to tune the Aharanov-Bohm (AB) effect for both the single particle and for excitons.
The tunability is in both the strength of the AB effect as well as in its periodicity. We also investigate the strain
induce potential inside the self-assembled quantum ring and the effect of the strain on the AB effect.
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I. INTRODUCTION

The electron and hole wave functions acquire an extra phase
when moving in the presence of a perpendicular magnetic
flux. The acquired extra phase will be different for electrons
and holes, and this phase difference can be observed through
photoluminescence (PL) experiments, which exhibits an opti-
cal Aharonov-Bohm (AB) effect. Experimental verification of
this effect has been reported in PL. measurements of radially
polarized neutral excitons in a type-II quantum dot structure.'>
However, the optical AB effect will be strongly suppressed®
when both the electron and the hole are spatially confined
within the same region due to the Coulomb interaction, i.e.,
in a quantum ring (type-I quantum dot). This has spurred a
considerable search and study of the optical AB effect of
neutral excitons in semiconductor quantum rings by both
theoretical®>™ and experimental'? groups.

The optical AB effect in a quantum ring can be enhanced
when the exciton is radially polarized, either by the application
of an external electric field”!'! or due to a radial asymmetry
in the effective confinement for electrons and holes.®® Theo-
retical studies®®%!3 on one-dimensional rings predict that for
a quantum ring whose radial size is comparable to the exciton
Bohr radius (i.e., in the weakly bound regime), the ground-
state energy could display nonvanishing AB oscillations.
However, numerical calculations on two-dimension narrow
rings*> showed that: 1) there is no observable AB oscillation
in the exciton ground state energy, but 2) AB oscillation can
be present in some low-lying excited energy levels.’

Here we study a nanoring structure, with and without strain,
which has a varying height in the radial direction as is often
found in self-assembled quantum rings.'>!*!> Applying a
strong electric field in the perpendicular direction polarizes the
exciton. We will show that the AB effect is strongly affected
by the shape of the nanoring structure and the external electric
field which has a large effect on the Coulomb interaction
between the electron and the hole, especially for quantum
rings with a large height. This gives us the possibility to tune
not only the shape of the electron and hole wave function,
but even the magnetic field induced oscillations in the exciton
energy through the application of an external electric field.

This paper is organized as follows. We present the physical
model in Sec. II. In the first part of Sec. III, we use the finite
element method to calculate the electron and the hole wave
functions and energies in unstrained semiconductor quantum
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rings. Subsequently we calculate the total energy of the exciton
in the presence of Coulomb interaction by diagonalizing the
total Hamiltonian in the space spanned by the product of the
single particle states. We show the tunability of the AB effect
for both the single particles and the exciton energy by applying
a perpendicular external electric field. In Sec. IV, we will give
the equivalent results for a strained semiconductor ring, and we
will show how the strain affects the results. Our conclusions
are presented in Sec. V.

II. MODEL

Figure 1 shows the investigated geometry of the three-
dimensional ring. A volcano shaped ring is embedded in a
barrier material which is different from the ring material.
In a three-dimensional semiconductor quantum ring, the
full Hamiltonian of the exciton within the effective mass
approximation is given by

Hy = Z (P; —qjAj)
j=eh

+ D SE;F)+ Y Vi) —eFzo +eFz, (1)
j=e.h

r - = .o
%(Pj —qjAj)) + Ve(re — 1p)

j=e.h

where V;(F;) is the confinement potential of the electron
(hole) due to the band offset of the two materials which
will be different inside and outside the ring. V, (. — 7)) =
e’ /4me| (o — 7y) | is the Coulomb potential between the
electron and the hole, and 8 E;(F;) is the strain-induced shift
of the energy which depends on the strain tensor ¢;;. We did
not take the piezoelectric potential into account since in our
case it is negligible compared to the other terms. The last two
terms of Eq. (1) are the potential energy in the presence of the
perpendicular top to bottom directed electric field F.

III. GAAs/AlGaAs QUANTUM RING

A. Single particle energy and wave function

As amodel system we consider first a volcano shaped GaAs
ring surrounded by AlGaAs. We assume that only the lowest
electronic sub-band and the highest hole band (heavy hole) is
occupied. In GaAs, the electron and the hole have effective
mass m,/my = 0.063 and m;/mo = 0.51, respectively. The
static dielectric constant is ¢ = 12.5¢¢ and the band gap is
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FIG. 1. (Color online) Schematics of the volcano-like quantum
ring. A perpendicular electric and magnetic field are applied in the
vertical direction. Bottom: the structure of the quantum ring in the
p-z plane.

E, =1.42 eV at helium temperature. While for AlGaAs,
we have m,/mo = 0.082, mj,/mo = 0.568, ¢ = 12.5¢¢, and a
band gap of £, = 1.78 eV. This results in a band gap difference
of AE, = 360 meV between GaAs and AlGaAs, which leads
to a conduction band offset of about AE,. = 250 meV and a
valence band offset of about AE, = 110 meV, so we can take
V (Feny) = 0 inside the ring and AE,, outside the ring. The
parameters used were taken from Ref. 18. As the dielectric
constant is practically the same everywhere and the difference
of the lattice constant for GaAs and AlGaAs is very small,
we may ignore the dielectric mismatch effect, and the strain
induced term in Eq. (1).

First, we calculate the single particle energy and the
corresponding wave function. Because of cylindrical sym-
metry we rewrite the Hamiltonian in cylindrical coordinates.
The wave function of the single particles can be written as
W, (0,2,0) = Ven(p,2)e " "@? and after averaging out the
angular part of the wave function, we obtain the 2D single
particle Schrodinger equation:

[_ﬂ<3_2+3_2+li_lfﬂ_ﬂ)
2mepy \02> ~ 9p*  pdp  p* Amp

q Bl -
i + V(rem) + q Fzeny [Weny(0,2)
Me(h)

=E, Yem(0,2), ()

here g is —e for the electron and e for the hole. Taking
advantage of cylindrical symmetry we only need to solve the
problem in a half-section of the ring as shown in the bottom
right inset of Fig. 1. We use the finite element method to
obtain the ground-state energy for different angular momenta
lo(ny and electric field F as a function of magnetic field B. For a
better understanding and further consideration of the transition
between different angular momenta for the ground state, we
first write down the single particle Schrodinger equation in
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dimensionless form (assume B = 0 and /,)=o):

2 2
Mey(hy) (O 3 19 o /
g - \% ArF

X Yen)(0,2) = E}, ey (p:2)s 3)

where £, = E, ;/Eo, and Eg = 12 /2m o) R? is the energy
unit. We take Ry = 1 nm as the length unit, and m.@,) is
the effective bulk mass of the electron (hole) in GaAs. The
effective band offset V'(Fon) = V(Fen))/Eo is 0.425 for the
electron and 1.472 for the heavy hole. We take the unit of
the electric field to be F; = 1 kV/cm and the coefficient Ay =
FlRoe/E() = 0.00263me0(h0).

Figure 2 shows the single particle energies of the electron
and the hole as a function of the perpendicular magnetic
field B for different values of the angular momentum and
the electric field F. Here the size of the ring is chosen to
be hy =4 nm, h, =6 nm, Ry = 12 nm, and R, = 30 nm.
Notice that the absolute value of the angular momentum of
the ground state for both the electron and the hole increases
with B and a pronounced AB oscillation is found (the second
transition of the hole does not take place below B =30 T,
but it will definitely be there above 30 T). It is clearly seen
that the electric field has a larger effect on the hole than on the
electron. Furthermore, the electric field pushes the electron and
the hole wave function in opposite z direction which results
in a difference in the shape of the wave functions. When we
decrease the electric field or even change the direction of the
electric field, the angular momentum transition of the electron
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0.03 —T= p
N, —l=0 l=2 s h=0 =
<016/ e (=3| 002 weazhEt 48
> el s S . "Ll =4
20.14; ~. .\'-\ = () 0.01 -. . -
<

0 5 10 15 20 25 30
B(M

0 5 10 1520 25 30
B(T)

FIG. 2. (Color online) Electron and hole energy for different
electric field F and angular momentum /. as a function of magnetic
field. The size of the quantum ring is #; = 4 nm, h, = 6 nm, R| =
12 nm, and R, = 30 nm. The arrows indicate angular momentum
transitions in the single particle ground state.

115448-2



TUNABLE OPTICAL AHARONOV-BOHM EFFECT IN A . ..

ground state will be more obvious, while for the hole, the
transition becomes invisible (when F = 100 kV/cm, there is
no transition for the hole ground state for a magnetic field B
below 30 T). This will provide us with the possibility to tune the
Aharonov-Bohm effect using the perpendicular electric field
F, i.e., we can turn the AB effect (within a certain range of
magnetic field) off and on with this perpendicular electric field.
We can have a ring-like wave function (i.e., the probability is
zero in the center of the ring) or a Q D-like wave function
(i.e., not zero probability of the wave function in the center)
depending on the perpendicular electric field F.

Figure 3 shows the contour plot of the electron and the
hole wave function in the p — z plane. When the electric field
changes from 100kV /cm to —100 kV /cm the wave function of
the hole changes from a Q D-like to a ring-like wave function,
while the wave function of the electron changes from ring-like
to QD-like. Notice that the wave function of the hole is
more sensitive to the electric field, which can be understood
from the dimensionless form of the Schrodinger equation,
Eq. (3). Notice that the term related to the electric field is
0.00263m1,(1,) F'z, which is proportional to the effective mass.
As the heavy hole has a larger effective mass, the effect of the
electric field will be larger.

From a careful inspection of Eq. (3) and Fig. 3 we determine
the constraints in order to have an electric field tunable
Aharonov-Bohm effect: (1) The electric field term ApF'dz

Hole

Electron

FIG. 3. (Color online) Contour plot of the ground-state wave
function of the electron and the hole for different values of the
perpendicular electric field F in the (p,z) plane. Here B = 0, 1,4,y = 0
and the electric field F from top to bottom are 100kV /cm, 50kV /cm,
0, =50 kV/cm, —100 kV/cm. The contour of the ring is shown by
the black lines.
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h1=2, h2=6,R1=12,R2=30
F=100 kV/cm

h1=5.5, h2=6,R1=12,R2=30

F=-100 kV/cm

h1=1 , h2=6,R1=20,R2=30

FIG. 4. (Color online) Contour plot of the ground state wave
function of the heavy hole for different sizes of the ring. The size (in
unit of nm) and the corresponding electric field are specified above
each figure.

must be comparable to the difference of the confinement
energy of the QD-like and ring-like wave function, which
is proportional to 1/h% —1/h3. When passing from the
QO D-like to the ring-like wave function, the difference of
the z coordinate is proportional to (hy — hy)/2, so the first
constraint condition is Az F'(hy — hy)/2 ~ 1/h? — 1/ h3. For
example in our case, iy =4 nm, h, = 6 nm and for the
heavy hole with an effective mass m; = 0.51m the electric
field should be at least 2(1/hi — 1/h3)/AFr/(hy — h))F; =
2(hy + hg)/(h%h%Ap)Fl, which is several tens of kV/cm. If
we decrease hy, then the electric field should be larger. We
see from Fig. 4(a) that if #; = 2 nm, the wave function of
the hole is still ring-like when F = 100 kV /cm, and we need
to increase the electric field in order to have a Q D-like wave
function, which leads to the second constraint condition: (2) the
confinement energy of the electron (hole) when it is Q D-like
(i.e., which is ~ 1/ h%) should be smaller than the band offset
V'(Feny) of the quantum ring, otherwise the electron (hole)
will move out of the ring into the barrier for large electric field
values, as can been seen from Figs. 4(b) and 4(c). The wave
function is still ring like when F = 200 kV/cm, but when
we increase the electric field to F = 250 kV/cm, the wave
function starts to penetrate in the barrier region. The AB effect
is still tunable, but the effect of the electric field will be very
small in case of a small ring height 4,. (3) The confinement
energy difference of the Q D-like and ring-like states, which
are proportional to 1/h3 — 1/h3 should not be very small,
otherwise the wave function of the electron (hole) will always
be Q D-like and shows no observable AB effect [as we can
see from Fig. 4(d), when #; = 5.5 nm and A, = 6 nm the
wave function is still Q D-like when F = —100 kV /cm]. (4)
In order to have a Q D-like wave function, the radius of the
ring R; should not be very large compared to the height of
the ring (otherwise the electric field will not have a significant
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effect on the wave function), and this constraint is much more
important when the height of the ring is small [we can see this
by comparing Figs. 4(e) and 4(f) with Figs. 4(a) and 3]. The
above four constraints were obtained for holes, but they are
also valid for electrons.

B. Exciton energy including Coulomb interaction

The total exciton energy is calculated using the config-
uration interaction (CI) method. We first construct the total
exciton wave function as a linear combination of the product of
single electron and hole wave functions, and then calculate the
matrix elements of the exciton Hamiltonian. By diagonalizing
the obtained matrix we obtain the exciton energies and their
corresponding wave functions.

The Hamiltonian of the exciton is

Ho = H, + H, + U,, (4)
here H, and H), are the single particle Hamiltonians,
Uy

, O
Vol + 017 = 2pLp coste — ) + (<L — 2

is the Coulomb energy between the electron and the hole,
where Uy = —e?/4meRy.

As the total angular momentum is a good quantum number
because of cylindrical symmetry, we assume the wave function
of the exciton to be

WL Ferfn) = Y Cu@i(Fern). (6)
k

for given total angular momentum L. Here, ®; (7,,7) =
Ve leveny, e~ and the exciton wave function is con-
structed out of single particle eigenstates, and k stands for
the indices (n.,np,le,l). Because of cylindrical symmetry
l, + 1, = L should be fixed. n.(n;) is the quantum number
of the single particle radial wave function. As the energy of
the single particle eigenstates with large angular momentum
quantum number [, (/;) and radial quantum number n, (n;)
is much larger as compared to the ones with smaller angular
momentum quantum number, we can limit ourselves to several
tens of single particle eigenstates. With this wave function,
we can construct the matrix of the total Hamiltonian and by
diagonalizing the obtained matrix, we obtain the eigenvalues
and eigenvectors.
For a fixed total angular momentum, we have

Uc(k, j) = CkCi{Py(Fe, )| Uc| @ j (Fe, )

= G C; /// Y Ui Ve i Al b el

x p.dp. p,dp;dz.dz), N

and where A; is the angular part of the integral

ejslnjsleslnk

A

ejslnjslekslnk

2 2
= Uo/ / do.doy

e~ i Uejtnj—lex=lni)e pi Un j=lhi)(@e=1)

X
\/péz + 0,7 —

®
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FIG. 5. (Color online) Exciton energy for total angular momen-
tum L = 0 as obtained from the CI method (solid line) and compared
to the results of the ground exciton energy without Coulomb
interaction (dot-dashed line), and the ground state energy by taking
the Coulomb energy as a perturbation (dashed line). Here the top
figure is for F = 0, and the bottom one is for F = 150 kV/cm.

We know from Eq. (8) that, in order to make the integral
nonzero, ly; + Iy j — Loy — lny should be zero, which indicates
that the total angular momentum is a good quantum number
even in the presence of Coulomb interaction between the
particles. If we take ¢, — ¢, as a new variable in Eq. (8), it can
be changed into an elliptic integral, which is easy to calculate
numerically. The remaining integral is calculated numerically.
The effective exciton Bohr radius is ap = 4mweh?/(pue?) =
11.7673 nm [p = 1/(1/m, 4+ 1/my)], and we take a small
volcano shaped ring (R; = 10 nm, R, = 16 nm, 4#; = 2 nm,
and h, = 4 nm), whose size is comparable to the exciton Bohr
radius. The results of the total exciton energy for F' = 0 and
F = 150 kV /cm are shown in Fig. 5, and as a comparison, we
also show the results of the ground exciton energy without
Coulomb interaction and the total ground-state energy by
taking the Coulomb energy as a perturbation (we took only the
lowest electron and hole state into account, the result is much
closer to the real one for a smaller ring when the Coulomb
energy is small compared to the kinetic energy). From Fig. 5 we
know that the Coulomb interaction has a large effect on the total
exciton energy, and unlike the perturbation result, the exciton
energy from the CI method shows a monotonous increase with
magnetic field. There are no oscillations as function of the
magnetic field. The existence of the top to bottom directed
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FIG. 6. (Color online) Ground-state energy and the five lowest
excited exciton energies as a function of the magnetic field. The
top figure is for the case of F = 0, and the middle one is for F =
150 kV/cm. (c) Second derivative of the exciton energy with respect
to the magnetic field. Solid curves are for F = 150kV /cm and dotted
curves for F = 0. Here Ry = 10 nm, R, = 16 nm, #; = 2 nm, and
h, = 4 nm for the ring.

electric field decreases the exciton energy by tens of meV but
does not result into any oscillation.

Figures 6(a) and 6(b) show the CI results, for the exciton en-
ergies with different values of the total angular momentum L,
when F =0 and F = 150 keV. It shows that the state with
total angular momentum L = 0 is always the ground state,
which is different from the perturbation theory result shown
in Fig. 5 where the total angular momentum of the ground
state switches between L = 0 and L = 1. We notice that the
energy of the exciton states show no oscillation with increasing
magnetic field, both with or without perpendicular electric
field. The effect of the electric field on the exciton leads to a
decrease of the exciton energy and a larger difference between
the energy of the lowest exciton states. In Fig. 6(c) we plot
the second derivative of the exciton energy with respect to
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the magnetic field, for both with (solid curves) and without
(dotted curves) electric field. We find that the second derivative
of the exciton energy shows a clear oscillation with respect
to the magnetic field, both for the ground state and excited
states energy. But since the size of the ring, as we specified
above, is very small, the period of the oscillation is large. The
oscillation in d? E,o;/d B? is slightly more pronounced when a
perpendicular electric field is applied. The reason is that the
electric field makes the electron and the hole move in opposite
directions which enhances the polarity of the exciton.

Till now, we did not observe any optical AB effect in
the exciton ground state energy and any large influence of
the perpendicular electric field on the oscillation. In order to
see the effect of the electric field more clearly, we calculate the
energy for a quantum ring with a larger height. Since the period
of the oscillation for the previous case is large, we increase the
radius of the ring in order to decrease the period. Figure 7(a)
shows the exciton ground-state energy with respect to the mag-
netic field in the case of F =0 kV/cm, F = —200 kV/cm,
and F =200 kV/cm (inset of Fig. 7). Here R, =
14 nm, R, = 18 nm, h; = 1 nm, and &, = 10 nm (the size
is still comparable to the effective Bohr radius). As the state
with total angular momentum L = 0 always has the lowest
energy, the ground state is the same as the L = O state here.
It is clear that although the F' = 0 state shows no oscillation
at all, the ground state energy in the presence of an electric
field shows a weak but observable oscillation, especially for
the case of F = —200 kV/cm. And the ground-state energy
is smaller in the presence of a top to bottom directed electric
field.

For a better understanding of the appearance of AB
oscillations in the ground state and the difference of the
oscillation period for different values of the electric field, we
calculate the average value (p) in the radial direction and (z)
in the z direction of the electron and the hole in the exciton
ground state. From Fig. 8(a) we see that (p) and (z) for both
electron and hole have no clear step-like behavior, but they
rather change smoothly. Furthermore, the difference of the
average values of the electron and the hole in both radial
and z direction is rather small, especially in the z direction.
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FIG. 7. (Color online) Exciton ground state energy as a function
of the magnetic field for F =0, F = —-200 kV/cm and F =
200 kV /cm (inset). The curves in different color stand for different y
scale.
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FIG. 8. (Color online) Average distance (p) (left y scale in
same color) and (z) (right y scale) in unit of nm of the electron
(hole) as a function of magnetic field for (a) F =0, (b) F =
—200 kV/cm, and (c) F =200 kV/cm. In (b) and (c) the curves
of the electron and the hole are separated in different subfigures.

This makes then the Coulomb interaction energy very large
and the polarity of the exciton extremely small, which greatly
weakens the oscillations in the exciton ground-state energy.
That is the reason why we can not observe any oscillation
of the exciton energy in the absence of the electric field. But
in the presence of a perpendicular electric field, we see from
Figs. 8(b) and 8(c) that the difference of the average values
between the electron and the hole becomes much larger. And
the average values (p) and (z) exhibit a pronounced increasing
(or decreasing) step-like behavior with increasing magnetic
field, especially for the electron. In both cases of F = 200
kV/cm and F = —200 kV/cm, (p,) and (z.) show a clear
oscillatory behavior with increasing magnetic field, and their
oscillation period is more or less the same as the period of the
oscillation in the exciton energy. That is because the coupling
of the electron and hole states with different angular momenta
becomes much smaller as a result of the weak coulomb
interaction. If we look at the normalization constant Cj in
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Eq. (6) we know that the step-like behavior in (p,) and (z.)
in Figs. 8(b) and 8(c) originate from the angular momentum
transition of the main contributing basis function in the total
exciton wave function. With increasing magnetic field, the
angular momentum pair (/,,l;) in the state ®; (7,,7,) which
has the largest contribution to the total wave function changes
from (0,0) to (—1, 1) or to even larger values, and this transition
becomes more noticeable in the presence of a perpendicular
electric field as the coupling between the different contributing
basis functions is much weaker.

From Fig. 8 we also see that there are some differences
between the cases F = —200kV/cmand F = 200kV/cm. In
the case of F = —200 kV /cm, the electron is in the center area
of the ring while the wave function of the hole has a ring shape.
The Coulomb interaction makes the electron (hole) move to
the top (center) area of the ring toward the hole (electron).
When the magnetic field is increased, the electron (hole) wave
functions change toward the area with larger (smaller) values
of p in which the hole (electron) is located, but as a result
of the strong electric field and confinement energy, only (o.)
is mainly modified. Moreover, compared to the electron, the
averages (p) and (z) for the hole change more smoothly with
increasing magnetic field. The behavior for F = 200 kV/cm
is different. The electron now is in the top area of the ring,
(p.) and (z.) change over a rather small range as a result of the
strong confinement in the top area of the ring. Moreover, with
increasing magnetic field, (o) and (z) for both the electron and
the hole increase toward the area with larger value of p, but
the change for the electron is very small. This is different from
the case of FF = —200 kV/cm.

In Fig. 9 we show the second derivative of the exciton
ground-state energy with respect to the magnetic field for
different values of the perpendicular field. We clearly notice
that the oscillation is enhanced in the presence of the
perpendicular electric field, independent of the direction of the
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FIG. 9. (Color online) Second derivative of the exciton ground-
state energy with respect to the magnetic field for different values of
the perpendicular field F' = 0 (black solid line), F = —100 kV/cm
(red solid line), F =100 kV/cm (red dash-dotted line), F =
—200 kV/cm (light blue solid line), F' =200 kV/cm (light blue
dashed line), and F = 250 kV/cm (dark blue dotted line). Here
R, =14 nm, R, = 18 nm, #; = 1 nm, and /, = 10 nm for the ring.
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electric field. The oscillation is much larger when the electric
field is directed from bottom to top. This can be understood by
comparing Figs. 8(b) and 8(c), where the (p) ((z)) differences
between the electron and the hole are both larger. But the
difference is smaller in the case of F = 200 kV /cm, where
the Coulomb energy U, is larger, which weakens the AB
oscillation in the exciton ground-state energy as compared
to the case of F = —200 kV/cm. We also verified in Fig. 9
that the period of the oscillation is larger when increasing the
bottom to top directed electric field, but smaller by increasing
the top to bottom directed electric field. The period change is
a consequence of the change of average radius of the electron
and/or hole with changing electric field. However, it is hard
to obtain this result only from the magnetic filed dependence
of (p.) and (p;). As we notice from Figs. 8(b) and 8(c) that
(p.) and (z.) is smaller in the case of F = —200 kV/cm
as compared to F =0 kV/cm, but (o) and (z;) is larger,
which probably decreases the AB oscillation period of the
total exciton energy. Moreover, although (p.) and (z.) is larger
in the case of F =200 kV/cm, but (p;,) and (z;) is smaller.
The point is that as the hole has a much larger effective mass,
the average radius of the exciton is mainly determined by
the electron. As we explained in Appendix A, the period of
the oscillation is proportional to my/{p.)*> + m./{ps)?, and is
mainly determined by the effective radius of the electron.

In order to study the exciton recombination, we calculate the
oscillator strength (the dimensionless quantity that expresses
the strength of the transition) for the state with total angular
momentum L = 0. The oscillator strength for the exciton
ground state is defined as'®!’

_ 2 exld PxilO(?

, 9
m Eex_EO ( )

Je
where m is the free electron mass and |ex) (]0)) is the exciton
state (single electron and hole pair). By using the envelope-
function approximation, we can derive®’

2
, (10)

2pP?

fg - m(E., — Eyp)

/‘I’g(ﬂ,ﬂ)d?g

here P includes all intra matrix-element effects, W, (Fp,Fe) is
the exciton ground state wave function. For simplicity, here we
will focus on the main variable part of the oscillator strength
whichis O; = | [V, (Fe,F.)dF, 2, named the overlap integral.
The result of the overlap integral for the exciton ground state
is shown in Fig. 10, for F = —200 kV/cm, F =0 kV/cm,
and F =200 kV/cm. In the presence of the electric field,
Oy exhibits more structure, and we can clearly see steps in
the overlap integral. These have the same period as the AB
oscillation, which also originates from the angular momentum
transition. Moreover, the overlap integral for the case of ' = 0
is much larger, which is a consequence of the extremely small
polarity of the exciton. O in case of F = —200kV /cm shows
the smallest value as compared to the other two cases, which
is due to the fact that the exciton has the largest polarity and is
most stable, and the AB effect is the strongest (which confirm
our results of Fig. 9). We also find that for all the three cases,
the overlap integral increases with increasing magnetic field,
which means the exciton has a smaller polarity and also a
weaker AB oscillation. This is quite different from the case
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FIG. 10. (Color online) Overlap integral O, = | [ W, (F,.7,)dr.|*
of the exciton ground-state energy as a function of the perpendicular
magnetic field. The blue dashed line is for F =0, red solid line
stand for F = —200 kV /cm, and black dash-dotted line is for F =
200 kV/cm. Note the different scales for the three curves.

of a single particle in a one dimensional ring where the AB
oscillation has almost the same strength. The reason is that
by increasing the magnetic field, the Zeeman term makes the
angular momenta (absolute value) of both the electron and the
hole increase, and consequently the electron and the hole will
have a larger effective radius (note that in the one dimensional
ring the radius is fixed). However, because the confinement
potential is different inside the 3D ring it prevents the electron
and the hole to move to the outer part of the ring which has
a radius larger than the top area of the ring. Which leads, as
shown in Fig. 8, to a smaller difference in the electron and
hole position inside the ring with increasing magnetic field,
and consequently, a larger value of the overlap integral and
weaker AB oscillation. We can also verify this result in Fig. 9,
where we see that the amplitude of the AB oscillation decreases
when we increase the magnetic field.

IV. INGaAs/GaAs QUANTUM RING

Now let us turn to a different system where strain is impor-
tant: In;_,Ga, As ring surrounded by GaAs, the concentration
of Ga is proportional to the coordinate z inside the ring,"
whichis x = 0.4 — 0.05z. We take R; = 15 nm, R, = 22 nm,
hy = 0.5 nm, and &, = 4 nm for the ring.

For In;_,Ga,As,'® we have the effective masses me/mgy =
0.023 4+ 0.037x + 0.003x2, my/mo = 0.41 + 0.1x, dielectric
constant & = (15.1 — 2.87x 4+ 0.67x?)gp, and a band gap
of E; = 0.36 +0.63x + 0.43x? eV. This results in a band
gap difference of AE, = 1.06 — 0.63x — 0.43x?% eV between
GaAs and In;_,Ga,As, we take 25% of AE, be the valence
band offset and 75% be the conduction band offset. Since x =
0.4 — 0.05z inside the ring, the band gap difference will be the
largest at the top of the ring (which is [1.06 — 0.63 x (0.2) —
0.43(0.2)*]1 = 0.9168 eV), we assume V(7;,) = 0 when 7 = 4
inside the ring, then we find that V(7)) = 0.25 x 0.9168 =
0.275 eV outside the ring and V (7;,) = 0.275 — 0.25(1.06 —
0.63x — 0.43x%) = 0.05324 — 0.01461z + 0.00032z2 eV in-
side the ring, while for the conduction band offset we
have V(7,) = 0.5032 +0.9168 x 0.75 = 1.145 eV outside
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theringand V (7,) = 1.145 — 0.75(1.06 — 0.63x — 0.43x?) =
0.62756 — 0.03409z + 0.00075z%> eV inside the ring. For
convenience of our calculation, we take the value of the hole
confinement potential V(#;,), as in case of the electron, which
confines the hole in a potential well, larger value of V()
stands for higher energy. As a simplification, we do not take
the dielectric mismatch effect into account because ¢ is nearly
the same in the ring and in the barrier material, but just assume
& = 12.5¢( inside and outside the quantum ring structure.

As in Sec. III, we will solve the single particle Schrodinger
equation first. As the lattice constant'® is a; = 0.56533 nm
for GaAs and a, = 0.60583 — 0.0405x nm for In; _,Ga, As (x
from 0.2 to 0.4), there is a lattice mismatch (a; — a;)/a; of 6%,
which results in a large strain. The difference from the previous
case is that in a strained quantum ring the total confinement
potential terms V (Fo)) in Eq. (2) now comes from the band
offset energy due to the band gap difference, and the strain
induced term. We calculated the strain by adapting a method
developed by John Davies which is based on Eshelby’s theory
of inclusions,'®?* where the elastic properties are assumed to
be isotropic and homogeneous (for more details, see Appendix
??). In our model the lattice mismatch between the two
materials is g9 = (0.243 4+ 0.02025z)/5.6533 inside the ring
and O outside. By using the finite element method, it is easy
to obtain the strain. The strain in our case will change the
potential of the electron (hole) thus modify the band structure
including the conduction and the valence edge energies which
are among the most important parameters characterizing them.

We assume that the conduction band is decoupled from the
valence band. The edge of the conduction band responds only
to the hydrostatic strain, the total confinement potential for the
electron now becomes?!

V() = Veoft + Ue = Veoif + acnya, (1)

where a, = —7.17 eV*72° for GaAs and —2.09x — 5.08 eV
for In;_,Ga, As is the hydrostatic deformation potential for
the conduction band, and éepyg = €xx + €,y + &;; denotes the
hydrostatic strain &yyq.

The total confinement potential for the heavy hole
becomes?!

V(iR = Viort + Uy

= Vhor + P +sgn(Q)v/ 0>+ RRT + SST,  (12)

P = ay(€xx + €y +€;2),
b

0= E(Exx + €yy — 2€;,),
V3b

R = T(exx - eyy) + idexy’

S = —d(e,; — ieyz)»

here a, =14+0.16x eV, and b=—-1.8—-0.2x eV for
In;_,Ga, As are the deformation potentials of the valence band
andd = —3.6 — 1.2x eV.2226

The result of U, and U, in the half section of Fig. 1 are
shown in Fig. 11. We take the opposite value of the strain
induced hole confinement potential (—U,) here (the heavy
hole can be treated as confined in a potential well as in the
case of electron). Both figures of U, and —U, show that the
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FIG. 11. (Color online) (a) The strain induced shift of the band
offset of the electron, U.. (b) The strain induced shift of the band
offset of the hole, —U,. The data are taken in the p-z plane.

compressive strain (which is the case for Ga,In;_,As/GaAs
quantum ring) makes the potential energy of the hole and the
electron higher inside the ring, so the confinement potentials
are smaller than the ones without strain. Figure 11(a) shows
that the strain induced potential for the electron is smaller in
the area with smaller p and z, while for the hole the top area
of the ring has the lowest strain induced potential. As a result,
the strain pushes the electron and the hole apart from each
other. In order to see more clearly the effect of the strain on
the confinement potential and its distribution, we plot U, and
U, along different directions for different values of p and z in
Fig. 12.

Figure 12 shows that, as the In concentration is different in
the z direction, the band offsets (confinement potential without
strain) for both the electron and the hole reach their minimum
in the top area of the ring where z is larger. But in the plane
with the same value of z, the confinement potential is the same
everywhere inside the ring. However, in the presence of strain,
the spatial variation of the total confinement potential for the
electron and the hole is quite different. In the radial plane the
confinement potentials are no longer constant. The electron,
as shown in the first column of Fig. 12, always has a lower
potential energy when p, is smaller. Contrary, as shown in
the third column of Fig. 12, the minimum of the potential of
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FIG. 12. (Color online) The first (second) column are the electron confinement potential in the p (z) direction for different values of z (p),
and the last two columns are the results for the hole. Blue-solid curves are the band offset (confinement potential without strain) of the electron
or the hole, while the red-dashed curves are those for the case when strain is included. Here the confinement potentials are in units of eV.

the hole is always in the place where p;, is around 15 nm. In
addition, we can find in the second column of Fig. 12 that
the total potential of the electron increases with increasing z,,
whereas, the confinement potential for the hole still shows
a similar dependence on z; as in the case without strain.
As a result of the strain, the distribution of the confinement
potential for the electron and the hole becomes very different
and consequently the single particle wave function for the
electron and the hole will also be different, which will affect
the polarization of the exciton.

With the obtained strain induced potential, we solved the
single particle Hamiltonian in the three-dimensional ring and
we show the results for the energy in Fig. 13. We can clearly
see that the electron and hole spectrum shows similar patterns
as in the case without strain [Figs. 13(a) and 13(b)], but they
are quite different when the strain is taken into account. The
first two transitions in Figs. 13(a) and 13(b) do not occur at
the same B value, but the difference is very small, especially
by comparing them to the bottom two figures. As shown in
Figs. 13(c) and 13(d) the first transition for the electron takes
place for B around 7 T, while for the hole it takes place for
B around 3 T. Moreover, we only have one transition for the
electron within B = 15 T, the electron is in the region with
very small radius while the hole prefers the top of the ring, as
we forecasted. Thus, as a result of the large strain distribution
difference, the wave function distribution for the electron and
the hole are much more different when strain is present.

Since the ring is small there is a large confinement energy,
the Coulomb interaction energy is smaller than the kinetic
energy, and the exciton will be more polarized as is verified
in Fig. 14, where the total exciton ground state energy with
and without strain are shown. The ground state energy is
parabolic like with increasing magnetic field in the absence of
strain, and the amplitude of the AB oscillation is small. When

0.08
0.92 (a) (b)
< 09 s
> ° /
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<, 088 ] 20076 ]
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0B ———— —_—
0072
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FIG. 13. (Color online) Sing particle ground-state energy for
different values of angular momentum as a function of magnetic
field. (a) and (b) are the six lowest electron and hole energy levels
without strain, while in (c) and (d) strain was taken into account.
The arrows indicate angular momentum transitions in the ground
state.
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FIG. 14. (Color online) Exciton ground-state energy as a function
of the magnetic field without strain (blue dash line, with y-axis
labeling on the left) and with strain (green solid line, with y-axis
labeling on the right). Inset: the second derivative of the exciton
ground-state energy with respect to the magnetic field.

strain is included, the exciton ground-state energy is no longer
parabolic-like. The AB oscillation is more pronounced as seen
from the inset of Fig. 14, where the second derivative of the
exciton ground-state energy with respect to the magnetic field
is shown. By taking the strain into account, the AB oscillation
is obviously enhanced, but the period of the oscillation
becomes larger, as the strain induced potential confines the
electron more toward the center of the ring.

In Fig. 15 we show the electron and hole effective position
difference for both cases with and without strain. It is clear
that, in case strain is included, (z;,) — (z.) is more than 5 times
larger than the one without strain, moreover, (r,) — (r.) is
almost 6 times larger in the case strain is included. Thus strain
polarizes the exciton. Comparing with Fig. 8, we notice that the
electron and hole effective position differences become much
larger in an InGaAS/GaAs quantum ring, as a result of the In
concentration difference in the z direction and the strain. The
electron and hole effective position differences in a strained
ring even outperforms the result of Fig. 8(c), where a strong
perpendicular electric field was applied. However, similar
to the previous section, both the electron and hole effective
position differences decrease with increasing magnetic field,
which indicates that the exciton becomes less polarized which
weakens the AB effect.

When applying a perpendicular electric field, we have a
similar tunable AB effect as in previous section. The period
of the AB oscillation as a function of applied electric field is
shown in Fig. 16, the dependence of the AB amplitude (we
define it by the difference of the value of the second derivative
of the total energy at B = 0 from the value at the magnetic
field where the first transition takes place) on the electric
field is also plotted, but with y-axis labeling on the right.
The period of the AB oscillation, as we found in the case of
a GaAs/AlGaAs quantum ring, decreases when we increase
the top to bottom directed electric field. The electron, which
determines the period of the exciton AB oscillation (see
Appendix A), prefers to stay close to the center of the ring
due to the strong strain induced confinement potential. When
we apply a bottom to top directed electric field, the electron
is pushed much closer to the center with a smaller effective
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FIG. 15. (Color online) (a) (r,) — (r.) (solid line, y-axis labeling
on the left) and (z,) — (z.) (dashed line, y-axis labeling on the right)
as a function of magnetic field B in case strain is excluded. (b) The
same as (a) but including strain.

radius, thus the period increases; and as the electric field pushes
the hole in the opposite direction, the enlarged polarization of
the exciton should increase the amplitude of the AB oscillation,
which can be seen from Fig. 16. If we change the direction of
the electric field, the period will decrease and the AB amplitude
will weaken, since the electron and the hole are pushed toward
each other. However, the AB amplitude increases when the
electric field is so strong (here, when larger than 150 kV/cm)
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-©- Period
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FIG. 16. (Color online) Solid line marked with circle symbols is
the period of the AB oscillation as a function of applied electric field,
while solid line marked with prism corresponds to the AB amplitude
(y-axis labeling on the right).
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that the electron and the hole switch their position: the electron
attains a larger effective radius than the hole. The bottom to top
directed electric field has a larger effect on the AB oscillation,
because the strain induced potential counteracts (enhance) the
influence of the top (bottom) to bottom (top) directed electric
field. When comparing with Fig. 9, the effect of the electric
field here is much smaller than in previous section as the height
of the ring is smaller.

Our results for Ga,In;_,As/GaAs quantum rings
agree well with recent experimental data on similar
Ga,In;_,As/GaAs rings,”® except for the period of the AB
effect. The period difference here is because the size of
the ring in the experiment is a little different from the
size we took. Figure 16 shows similar results as Fig. 5 in
Ref. 28 by decreasing the top to bottom directed electric field,
the period of the AB oscillation increases. We notice that the
second period of the AB oscillation increases more slowly,
and does not take place for a magnetic field value three times
larger than the first one, which is very different from the case
of an ideal one-dimensional ring.% (The explanation for this
difference is given in Appendix A.) Furthermore, by studying
Fig. 8 of Ref. 28, we know that the PL intensity first increases
when we increase the top to bottom directed electric field, after
reaching its maximum value, the PL intensity decrease with
increasing electric field. As we showed previously, the electron
stays in the inner part of the ring while the hole prefers the
outer part of the ring when an electric field is absent, and the
exciton has a large polarity. By increasing the electric field, the
electron and hole move toward each other which decreases the
polarity of the exciton. When the electric field is large enough
to switch the position of the electron and the hole, the polarity
of the exciton will increase with increasing electric field. This
is collaborated by the results shown in Fig. 16 where the AB
amplitude increases at high electric field and the PL intensity
in Ref. 28 decreases.

V. CONCLUSIONS

In this paper we calculated the single particle energy
of a semiconductor quantum ring and found that the AB
oscillations of the single particle energies can be tuned by an
applied perpendicular electric field when the ring dimensions
satisfy some constraint conditions.

For the neutral exciton, we did not find any oscillation in
the ground-state energy of the exciton for both small and large
quantum rings, which agree with Refs. 4 and 5. But we found
that AB oscillation can be seen in the second derivative of the
ground-state energy with respect to the magnetic field. But in
the presence of a strong perpendicular electric field, for small
quantum ring sizes with a large height in which the effect
of the electric field is large, the ground-state energy of the
exciton shows a weak AB effect as the electric field polarizes
the neutral exciton in the vertical direction. Moreover, this
oscillation can be enhanced and the oscillation period can
also be changed by increasing the electric field, which results
in a tunable AB effect. The top to bottom directed electric
field decreases the period of the AB oscillation, but has a
smaller influence on the oscillation than the bottom to top
directed electron field. We also found that the oscillation of
the exciton ground-state energy mainly originates from the
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electron motion, which has a much smaller effective mass and
which determines the exciton effective radius. As we specified
above, this tunable AB effect can only be realized in certain
quantum rings. We also calculated the exciton energy for a
large quantum ring in which the Coulomb interaction is larger
than the confinement energy. In this case, no tunable AB effect
was found.

In addition, the strain inside the self-assembled quantum
ring changes the confinement potential of the electron and the
hole, and makes the confinement potential of the electron and
the hole quite distinct inside the ring. As a result of strain, the
polarity of the exciton is increased and the Aharonov-Bohm
effect is enhanced.

Our results on the tunable AB oscillation of a neutral exciton
in a quantum ring can be verified experimentally. With the help
of a perpendicular electric field, it should be possible to observe
the optical AB effect in small semiconductor quantum rings
with relative large height.
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APPENDIX A: DEPENDENCE OF THE PERIOD OF THE AB
OSCILLATION ON THE ELECTRON AND HOLE
EFFECTIVE RADIUS

In this Appendix, we prove that for the ground state
with total angular momentum L = 0, the period of the AB
oscillation is more related to the effective radius of the electron,
and the effect of the electric field on the exciton AB effect is
almost the same as on the electron.

The total Hamiltonian of the exciton is

H= Y n*a? n*a n 1
O W 2mide? 2mipidpr 202 midz
R*>  B%*p®  hleB
’ ’ V. Al
Zmipi2+ gmi | 2m }+ ' Al

As the In concentration is different in the z direction, m; is a
function of z. V; in Eq. (A1) stands for the total confinement
potential which includes band offset, strain, and so on, and /;
is the single particle angular momentum.

In our CI calculation of the exciton energy, the [, = 0 and
1, = ODbasis function contributes most to the L = 0 state before
the first momentum transition, and the total energy of the
exciton is

2,2 2 2,2 2
Bie"p;o | BTepig

Ey = Exin +
0 kin Sm,- 8m,~

+ Vi (A2)
where E\j, is the total kinetic energy, and p.o (ppn0) is
the effective radius of the [, =0 (I, = 0) state. Here the
effective radius is used, the total energy is approximate, but
the difference with the exact result turns out to be small and
we are able to estimate the effect of the electric field correctly.
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In the presence of an electric field F = F,, assume the
effective radius of [, =0, — 1, —2 (I, = 0,1,2) to be p, 04,
Pe.1a A0 P, 24 (Pn.0as Pr.1a and pp24). Since the terms with
B? in Eq. (A2) are much smaller (~1073 — 10™%) than the
other terms, we neglect them here (however, they are fully
considered in the numerical calculation of the total exciton

energy).
At F = F,, the first transition will happen for

hZ(_l)Z h2(1)2
Exino + Vio = Exing + Vi1 + 5 3
2meloe,1a 2’/nhloh,la
heB heB
- (A3)
2m,  2my,

and let C; = Ekino — Exin.1 + Vi.0o — Vi1, as the state with
larger angular momentum has larger p, the result of the first
two terms in Cy, is larger than zero, but as V; o — V; | could be
smaller than zero, the sign of Cy, is uncertain, however, this
term does not have a large effect on the transition point. From
Eq. (A3) we obtain the value of the magnetic field where the
first transition takes place:

Bla ~

1 < mp n m, ) (Ad)

Am(me + mh) pfila pf%.la ,
here A,, = e/h. As the effective mass of the hole my, is much
larger (around 9 times) than the electron m, and the effective
radius of the hole is larger than the electron, we see from
Eq. (A4) that the first transition point is determined by the
effective radius of the electron.

Similarly, the first transition point at F = F, (F,, > F,)
should happen for

1 m m
By ~ ( — + — ) (A5)
Am(me +=m) \p; 1, Php

Then the difference of the first transition point by increasing
the electric field is

ABl = Bla - Blb
2 2
Pe1b — Pe1a

2 2
pe,lupe,lb

+m,

1
A mpy
Am(me +mh)< p%,laplilb

(A6)

Taking into account the effective mass and radius of the
electron and the hole, it is easy to deduce that the change of
the first transition is determined by the change of the electron
effective radius, although the change of the hole effective
radius may be comparable or even larger than the one of the
electron (as shown in the previous section). This is the reason
why the magnetic field of the first transition point decreases
with increasing electric field, although the effective radius of
the hole decreases.

When the electric field is F,, the second transition takes
place when

R (—1)? n*(1)2 heB heB
2mepry,  2mppy,, 2me  2my
h2(=2)? R2(2)2 2heB  2heB
~ 2 2 - ’ (A7)
2mepe’2a 2mh,oh’2a 2m, 2my,

2 2
Prap — Ph,1a>
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which results in

1 4my, my 4m, me
By, = A tmp\ o2 2 2 2 )
mMe TMp) \Pgoy  Peta  Ph2a  Phila

(A8)

where we neglect the kinetic energies and the potential terms.
From Eq. (A8) we see that the second transition is also
dominated by the electron effective radius, and as pp, is
larger than p,,, the second transition point could be smaller
by a factor 3 as compared to the first one (while in a
one-dimensional ring, p», = p14), the second transition takes
place at a magnetic value which is three times larger than the
first one.

The above analysis is only a simple estimate, the real case
will be much more complicated, as a result of the coupling
of states with different angular momenta. The found estimate
for the magnetic field transition is approximate but it turns
out to be close to the exact one when the particle is more
confined.

APPENDIX B: STRAIN CALCULATION USING
ESHELBY’S THEORY

Eshelby introduced the theory of inclusion in his paper
of 1957,% where he calculated the stress distribution for an
isotropic and homogeneous inclusion in an infinite isotropic
body. The total strain acting upon the inclusion consists of the
mutual strains exerted by the inclusion and the surrounding
material. Here a volcano like In;_,Ga,As quantum ring is
embedded in an infinite lattice of GaAs and we proceeded
as follows: (1) In an infinite sample of GaAs, we extract
a volcano-like ring which has the size of the In;_,Ga,As
ring, and leave a cavity in the sample. (2) We transmute the
material of the volcano-like ring from GaAs to In;_,Ga, As
in a strain-free environment. As the lattice constant of GaAs
is smaller, the ring expands by a fraction €, which is given
by the lattice mismatch between the two materials, i.e., €g =
Arn, .Ga,As/AGaas — 1. (3) By applying hydrostatic pressure,
the volume of the ring is reduced to its original value. (4) The
compressed In;_,Ga,As is put back into the cavity and we
allow it to relax. This causes radial displacements in both the
ring and the surrounding material.

From the point of view of Eshelby’s theory of inclusion, our
volcano-like ring is the inclusion, embedded in a stress-free
barrier material and characterized by an eigenstrain which
is material dependent. When the ring is removed from the
barrier material, it expands due to this eigenstrain. In this case,
this eigenstrain is nothing else than the lattice mismatch. For
small deformations, the total strain 65 is the sum of the elastic
strain €;; and the nonelastic eigenstrain €}

T __ *
€; =¢€ij t¢€; B1)
and the total strain is related to the displacement through the
linearized kinematic relations:'”

ey = [30ui; +u;n], (B2)

where u; is the field of displacements, to be calculated.
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The elastic strain is related to the stress o;; through Hooke’s
law, so
T
aij = Cijuen = Ciju(eg — €iy)
= 1Cijuurs + ure) — Cijuesy, (B3)
in which Cjj; denotes the stiffness matrix which is supposed

to be constant.!® When the system is in equilibrium and no
external forces are present, we have

80’5‘ 1 3uk,1 3ul,k oe;
! =Cij <— + = Ciju—=. (B4
8Xj 8.Xj 3.Xj

As a simplification, we restrict ourselves to the case when only
the change of volume is important, thus we have €, = €ydy
inside the ring (inclusion) and zero in the barrier. As a result,
the right-hand side term in Eq. (B4) is always zero except at
the boundary of the ring.
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Furthermore, we integrate Eq. (B4) from a point r; close
to the boundary €2 in the ring to a point r, in the barrier (n;
below is the normal in the related direction),

2] auk[ 8141 k /rz 36;?[
—Cii | —= + —= )dxin; = Cim—Xdxin;,
/; 2 Jk < 0x; 0x; il i 0x; Xin

r

(B5)
which after integration becomes
I Cij iy + w1y, — [Cijra Qi + uri)le}
= Cjjueodun;. (B6)
Then by solving the 3D equation
1
5V-(CVu)=0 B7)

numerically together with the boundary condition (B6), we

obtain the displacement u, and the strain eg.
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