
Ground state and vortex structure of the N=5 and N=6 electron quantum dot

M. B. Tavernier,1,* E. Anisimovas,2,† and F. M. Peeters1,‡

1Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
2Semiconductor Physics Institute, Goštauto 11, LT-01108 Vilnius, Lithuania

�Received 15 March 2006; published 13 September 2006�

A system of N=5 and 6 two-dimensional Coulomb-interacting electrons, trapped in a harmonic potential and
subjected to a perpendicular magnetic field, is studied using an exact-diagonalization technique. The results are
summarized in a phase diagram, indicating the ground state as a function of the magnetic field and the
electron-electron interaction strength. The transformation to a Wigner crystal after the breakdown of the
maximum density droplet is investigated and is related to the vortex structure of the different states. The
internal structure of the composite fermion is investigated as function of the magnetic field and related to
several properties of the quantum dot �e.g., compressibility, liquid or crystal, stability of the ground state, and
so on�.
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I. INTRODUCTION

Vortices are ubiquitous in nature, with examples ranging
from the Great Red Spot on Jupiter and hurricanes and tor-
nadoes in the Earth atmosphere to rotating Bose-Einstein
condensates. Vortices consist of a center and circulating mat-
ter and reflect formation of dynamically stable patterns in a
turbulent environment. In quantum dots �and generally in
condensed matter physics� we encounter vortices in the elec-
tronic wave function—they consist of a point where the elec-
tron density is zero and by walking in a small circle around
it a jump of 2� will occur in the phase of the wave function.
The importance of these vortices emerged after the discovery
of the fractional quantum Hall effect.1 In his attempt to de-
scribe the experimentally obtained results Laughlin localized
vortices at the position of the electrons to form the Laughlin
wave function2

� = �
j�k

�zj − zk�2p+1 exp�−
1

4�
l

�zl�2� , �1�

which describes a system of N particles at filling factor �
=1/ �2p+1�. The length is measured in units of the magnetic
length lc=��c /eB and z=x− iy is a complex number ex-
pressing the two-dimensional coordinates of the electrons in
the plane. The Jastrow factor expresses a strong correlation
between the vortices and the electrons and will help in sepa-
rating the electrons from each other �and thus reducing the
electron-electron repulsion energy�. The relation between the
filling factor � and the angular momentum L is given by �
=N�N−1� /2L.

The introduction of the composite fermion3–5 as an effec-
tive new particle emphasized again that vortices play a cru-
cial role in the system. This new particle consists of an elec-
tron that binds an even number of zeros �magnetic flux
quanta� from the wave function to it, and thus is transformed
into a weakly interacting quasiparticle moving in a reduced
magnetic field �due to the partial cancellation of the magnetic
field by the attached flux quanta�. The fractional quantum
Hall effect is then understood in terms of the integer quan-
tum Hall effect for these new quasiparticles.

Before investigating the properties and behavior of vorti-
ces in quantum dots it is important to fully understand how
the system behaves in an external magnetic field. Recent
techniques have made it possible to create quantum dots with
a few electrons trapped inside.6–8 The nature of the confining
potential depends on the experimental setup but often a har-
monic potential is appropriate to model the system. The in-
terplay of several effects inside the quantum dot �electron
repulsion, spin effects, Zeeman interaction� makes this an
interesting system to study, exhibiting ground-state trans-
itions,9–13 formation of Wigner crystals,15 magic angular
momenta,16 and several other phenomena. When the number
of electrons inside the quantum dot is small �typically N
�6� an exact diagonalization �ED� scheme is possible, as
performed in Ref. 9 for systems with N=5 and 6. Systems
with larger numbers of electrons can be studied when one
restricts the basis functions to, e.g., the lowest Landau level
�LLL�, which significantly reduces the computing time. With
approximate methods, like the Hartree-Fock method, renor-
malized perturbation series,17,18 and approximate wave func-
tions, like the Laughlin wave function and the rotating elec-
tron molecule wave function19,20 �REM�, a lot of results have
been obtained in the past. The formation of vortices in few-
electron quantum dots has recently been the subject of
research.21–24

Here we will present a detailed study of systems of N
=5 and 6 electrons, trapped in a harmonic potential and sub-
ject to a perpendicular magnetic field. For a system with six
classical particles two configurations will emerge:15 one with
six electrons on a ring and the other with five on a ring and
one in the center. It was suggested that the system tunnels
between these two energy minima.25 The competition be-
tween these different ground-state symmetries will lead to
interesting features in the quantum-mechanical system. Since
this is also a system with one electron in the center, one
could expect the appearance of bulk effects. Special attention
will be given to the vortex structure and its relation to several
properties of the quantum dot like the compressibility and
the radial density.

The structure of the paper is as follows. In Sec. II the
theory of the involved computational methods is presented,
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results for five electrons are described in Sec. III, and for six
electrons in Sec. IV. We conclude in Sec. V.

II. MODEL

We model the system as N electrons moving in the z=0
plane and laterally trapped in a harmonic confining potential
V�r�=m*�0

2r2 /2 where m* is the effective mass of the elec-
trons in the host semiconductor, �0 is the oscillator fre-
quency of the confining potential, and r= �x ,y� denotes the
position in the z=0 plane. To make optimal use of the circu-
lar symmetry of the problem, the vector potential will be
expressed in the symmetric gauge A=B�−y ,x ,0� /2. The
Hamiltonian of this system is then given by
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where the last three terms represent the contribution due to
the magnetic field with �c being the cyclotron frequency, g*

the effective g factor, me the bare electron mass, L̂z the total

projected angular momentum operator, and Ŝz the total pro-
jected spin operator. Since the latter two commute with the
Hamiltonian we can work in subspaces of fixed Lz and Sz and
the associated terms become constants while in these sub-
spaces.

We study this system using dimensionless parameters,26

i.e., measuring lengths in l0=�� /m*�0, the oscillator length,
and energies in ��0. A dimensionless parameter �= l0 /aB

*

�here aB
* =
�2 /e2m* is the effective Bohr radius� describes

the strength of the electron-electron interaction. The dimen-
sionless Hamiltonian becomes
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with �c=�c /�0.
The effect of an external applied magnetic field can be

understood as a rescaling of ri to 
ri, with 
4=1+ 1
4�c

2. This
results in a new effective �*=� /
 strength for the Coulomb
interparticle interaction. This shows that to calculate the en-
ergies and wave functions at finite values of the magnetic
field one simply needs to calculate these at �c=0 and with a
modified �. The terms with Lz and Sz can be simply added
since we work in subspaces of fixed Lz and Sz.

The multiparticle wave function is expanded in a basis of
Slater determinants constructed from the Fock-Darwin orbit-
als. The number of basis determinants that have to be in-
cluded depends on the desired accuracy �e.g., for the con-
struction of the phase diagrams for N=5 at L=10, 58 830
terms were used�. For N=5,6 the computational demands
increase dramatically when one increases the size of the ba-
sis used. Restricting the basis functions used to the LLL

generally yields good results which are obtained within a
reasonable time and is a very accurate approximation at high
magnetic fields �and thus high angular momenta�.

We complement the results obtained from the exact diago-
nalization by those given by the REM wave functions.19,20

These functions are constructed by placing Gaussians at the
classical positions of electrons in strong magnetic fields and
a subsequent restoration of symmetry. For a small number of
electrons �N�5�, the electrons crystallize into a single
ring.15 The resulting wave function with the angular momen-
tum L reads20

�L = �
0�l1�l2�¯�lN
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Here, zj denotes the complex electron coordinate measured
in units of lc

�2 with lc=��c /eB being the magnetic length,
and D is the Slater determinant

D�l1,l2, . . . ,lN� = det�z1
l1,z2

l2, . . . ,zN
lN� . �5�

The wave function describes spin-polarized states of angular
momentum L=L0+Nm where L0=N�N−1� /2 is the smallest
possible angular momentum of N spin-polarized electrons in
the lowest Landau level, and m is a non-negative integer. For
a higher number of electrons �e.g., N=6� several rings can
form and a slightly different form of the wave function is
used �which for N=6 ensures that one electron is in the cen-
ter of the dot�.

III. RESULTS FOR FIVE ELECTRONS

By calculating the energies for all angular momenta and
spin states we are able to construct a phase diagram showing
the ground state in the �� ,�c� plane. In what follows we will
indicate the multiparticle ground states with �L ,S� and the
single-particle states with �n , l ,s�, where n, l, and s are the
primary, angular, and spin quantum numbers, respectively. In
Fig. 1 we show the ground states of a five-electron quantum

FIG. 1. Phase diagram showing the ground states for a system
with N=5 electrons as a function of � and �c. Angular momenta up
to 15 are included. The states are indicated as �L ,S�. Zeeman inter-
action is not included.
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dot without the Zeeman contribution. Figure 2 shows the
same but with the Zeeman interaction included using GaAs
parameters. The ground state at low magnetic fields is
�1,1 /2� which is transformed into �4,1 /2� when the mag-
netic field is increased. Notice that the critical magnetic field
needed for this transition depends only slightly on �, which
is an important difference between this transition and the
other transitions that occur in the system. This can be under-
stood when we look at the dominating Slater determinants,
which are shown in Fig. 3. The electron in the �0,−1,1 /2�
state will jump to the �0,2 ,1 /2� state due to the lowering of
the positive angular momentum states by application of the
magnetic field. The transition is therefore almost entirely in-
duced by an increase of the magnetic field. In the subsequent
transitions the electron repulsion will play a crucial role, and
competition between the magnetic field and the electron re-
pulsion will decide the ground state of the system. A similar
transition was found earlier26 in a four-electron quantum dot
where the phase boundary originated from ��=0, �c=0�.
Afterward, through a series of transitions, the system evolves
to the fully polarized maximum density droplet �MDD� state
�10,5 /2�. All angular momenta between the �4,1 /2� and
�10,5 /2� states are accessed by the system. When the Zee-
man interaction is turned on some of these states will be
squeezed out at high magnetic fields as can be seen from Fig.
2. One last thing to note is the influence of the Zeeman
interaction on the nature of the transitions leading to the
MDD state. The Zeeman interaction will cause the different
spin states to split in energy. Due to this splitting we find the
transitions �4,1 /2�→ �6,3 /2�→ �10,5 /2� with increasing

magnetic field for �→0, indicating that the electron repul-
sion is not the only driving mechanism. A similar effect was
observed in the N=4 system and can be seen from Fig. 2 in
Ref. 26 where one can observe the phase boundaries reach-
ing the �=0 line at certain �c values for the transitions lead-
ing to the MDD state. The lowering of the energy of the
positive angular momentum states by the magnetic field will
cause the spin-down electrons to jump to those states. This
means that for the case without Zeeman interaction the tran-
sition curves will asymptotically approach the �=0 line as
�c→�.

When comparing our results to those of Ref. 9 we notice
very good agreement between Fig. 2 and Fig. 1 in Ref. 9,
keeping in mind that � in Ref. 9 is inversely related to our �.

Figure 4 shows the ground state as a function of � and �c
for large angular momenta. Due to the long calculation times
these calculations were restricted to the LLL and full polar-
ization was assumed. One can see that the angular momen-
tum goes in steps of 5. This result is expected taking the
magic angular momentum theory16 into account, which states
that for a 5-0 symmetry �five electrons on a ring and none in
the center� only states with angular momentum of multiples
of five �counted from the MDD state� occur as ground states.

In Fig. 5 we plot the radial electron densities for several
of the ground states. It can be clearly seen that for the
�1,1 /2� and �4,1 /2� states the density is highest close to r
=0. For �6,3 /2� the density flattens out and for �10,5 /2�, the
MDD state is formed, where the density forms a droplet as
already discussed in numerous papers. On further increasing
the angular momentum the MDD state breaks down and a
minimum forms near r=0.

Figure 6 shows the pair-correlation function for several
ground-state angular momenta ranging from 15 to 35. One
can see clearly how the Wigner crystal appears as L in-
creases. The electrons become more correlated and form a
ring structure as in the classical system.15

By fixing the positions of all electrons but one in the
multiparticle wave function, we can investigate the condi-
tional electron wave function. Figure 7 shows the contour
plots of the phase of the reduced wave function for several

FIG. 2. Same as Fig. 1 but now with Zeeman interaction
included.

FIG. 3. The left-hand side shows the dominating Slater determi-
nant for the �1,1 /2� state and the right-hand side that for the
�4,1 /2� state for N=5 particles. The positive angular momenta are
lowered in energy by the magnetic field while the opposite happens
for the negative ones. This causes one electron to jump from the
�0,−1,1 /2� state to the �0,1 ,1 /2� state.

FIG. 4. The ground state at high magnetic fields. Full polariza-
tion of the spin was assumed and the exact diagonalization was
limited to the LLL. Angular momenta from 20 to 85 are included in
the calculation. Each transition corresponds to an increase of the
angular momentum by 5.
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angular momenta at which the system is fully polarized.
Since there is no noticeable difference when using only the
LLL or including higher Landau levels27 �as was already
noted in Refs. 13 and 28�, the LLL approach is used in order
to reach higher angular momenta. Vortices can be recognized
as points at which the phase jumps by 2� when one walks in
a small circle around them �the 0→2� jumps are indicated

FIG. 5. Radial electron densities as a function of r, the distance
from the center of the dot, at �=2 for several ground states indi-
cated as �L ,S�. The distance is measured in units of l0. Notice how
a minimum forms around r=0 for the states after the breakdown of
the MDD state. The Zeeman interaction is not included.

FIG. 6. �Color online� Pair-correlation functions for several
ground states at �=1 and �c for which this state is the ground state
for N=5. The angular momentum is indicated next to the plots.
Notice how a Wigner crystal forms. The plot in the bottom right
corner shows the electron density as a function of r, the distance
from the center of the dot, for several ground states.

FIG. 7. The phase of the reduced wave function for a system of
five electrons for angular momenta ranging from 20 to 65. The N
−1=4 electrons are fixed on the corners of a pentagon and indicated
by the small circles. The thick curves indicate the locations at which
the phase jumps by 2�. The vortices are located at the end points of
those lines.
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by the thick curves�. The electrons are fixed on the corners
of a pentagon with a radius obtained by maximizing
���r1 , . . . ,rN��2, the squared norm of the multiparticle wave
function. The rule that was previously found29 for N=3 and 4
also applies in this case. Every time one goes to the next
fully polarized state �i.e., L increases by 5�, five vortices are
added to the system. One of them enters inside the pentagon,
while the four remaining ones settle outside the pentagon
�not all vortices outside the pentagon are shown in the fig-
ures� on rays from the center. The vortices inside the penta-
gon tend to adapt their positions to the symmetry implied by
the fixed electrons. Notice how, from L=30 ��=1/3� on, the
vortices approach the fixed electrons, i.e., they become at-
tached to the electrons. At L=50 ��=1/5� each fixed electron
has four vortices in its neighborhood, which move closer to
the electron as the angular momentum increases further. Af-
ter L=50 the attached vortices will continue to approach the
fixed electrons while new vortices are added inside. Notice
that the four vortices that are attached to the electron are
localized on a straight line passing through the position of
the electron. When these results are compared to the REM
result shown in Fig. 8 one notices that in the REM case the
vortices do not cluster around the fixed electrons.

From the radial densities plotted in Fig. 6 one notices the
remarkable fact that the Wigner crystallization of the L=30
state seems less pronounced than for the other states �see also
Fig. 9�, i.e., the density in the center of the dot is the highest
for L=30 as compared to the other considered L values. This
can also be observed from the pair-correlation plots in the
same figure. The vortices in this state tend to approach the
fixed electrons �see Fig. 7�, forming quasiparticles, i.e., com-
posite fermions. Due to this behavior no vortices will be near
the center of the dot and the minimum will be less pro-
nounced. All this results in a more liquidlike nature for the
�=1/3 state than for the other states. In Fig. 9 we show the
electron density at the center of the quantum dot. Notice the
sharp drops at L=30→35 and L=50→55, which hint clearly
at a transition from a liquidlike to a more solidlike state. This
is in accordance with the bulk situation, where L=30 and 50
correspond, respectively, to �=1/3 and 1/5, where the
Laughlin incompressible quantum fluid is formed. Notice

also how for the LLL results �L=20 and higher� in Fig. 9 the
density at the center of the dot behaves as a straight line as a
function of the magnetic field. This is due to the restriction of
the basis to the LLL. When we compare the ED results with
the REM results plotted in the same figure one can conclude
that the REM wave functions overestimate the solidlike be-
havior of the system as they predict a much faster decrease
of the density as a function of the magnetic field. The de-
tailed behavior of the density as calculated with the ED
method is not reproduced by the REM calculation; in par-
ticular the L=30 and 50 states do not exhibit the liquidlike
character the ED method predicts.

IV. RESULTS FOR SIX ELECTRONS

In Fig. 10 the phase diagram is plotted for six electrons,
showing the ground state as a function of � and �c without

FIG. 8. The locations of the vortices in a system with N=5 as
calculated with the REM wave functions for the L=30 state. The
fixed electrons are indicated with crosses and the free vortices with
dots. Distances are measured in units of l0. Notice how the vortices
do not cluster around the fixed electrons.

FIG. 9. Electron density at the center of the dot �r=0� for the
ground state of the N=5 system at �=1 as a function of the mag-
netic field. From the L=20 state on, the basis functions have been
restricted to the LLL. The corresponding REM result �dotted curve�
is plotted for L going from 10 to 40. Notice how for the REM case
the density drops much faster to zero after the breakdown of the
MDD state and fails to show the details of the ED result, i.e., the
sudden decrease of the density after L=30.

FIG. 10. Phase diagram showing the ground states for a system
with N=6 electrons as a function of � and �c. Angular momenta up
to 20 are included. The states are indicated as �L ,S�. Zeeman inter-
action is not included.
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Zeeman interaction. Figure 11 shows the same but now with
Zeeman interaction included, i.e., g*=−0.44. At low mag-
netic fields the ground state is �0,0� which then is trans-
formed into �3,1� and subsequently �6,0�, which is the unpo-
larized MDD state for six electrons, when the magnetic field
increases in strength. If the magnetic field increases further
the system transforms into the polarized MDD state �15,3�
through a series of closely spaced transitions. As for the sys-
tem of five electrons, the critical field needed for the transi-
tions �0,0�→ �3,1�→ �6,0� depends only slightly on � since
the nature of these transitions is the same as explained in
Sec. III but now two electrons need to jump from the first
Landau level to the LLL, resulting in two separate transi-
tions. The first transition will be more dependent on � than
the second one due to the fact that one of the electrons al-
ready made the jump. Note that in the limit of �→0 these
two electrons will jump together. Again it can be shown that
all the transitions up to the MDD state will happen at some
finite value of �c for �→0 when the Zeeman interaction is
included. This also means that for the case without Zeeman
interaction the transition curves will asymptotically approach
the �=0 line as �c→�.

Figure 12 shows the ground state as a function of � and
�c for large angular momenta. Due to the long calculation
times these were restricted to the LLL and full polarization
was assumed. Notice how the state with angular momentum
39 is part of the ground-state sequence. This possibility can
also be inferred from the magic angular momentum theory,16

which predicts that states with L=15+k�5 can be ground
states for a 5-1 symmetry and states with L=15+k�6 can be
ground states for a 6-0 symmetry if the system is fully po-
larized, with k an integer number. From a calculation with
classical particles15 we know that the two configurations
have energies that are very close to each other. By evaluating
���r1 , . . . ,rN��2 one is able to determine the symmetry of all
states in this phase diagram. The symmetry of most states is
clearly predicted, but for the L=45 state a mixture of both
symmetries emerges. The dominating contribution will be
5-1, with the 6-0 being about half as probable �while for the
other states the difference in probability is much larger�. The
next state that can have both 5-1 and 6-0 symmetry is L

=75 for which the fivefold symmetry is preferred, with the
sixfold symmetry about 24 times smaller in probability
�which is still large compared to the other states, which differ
by typically a factor 1032�. In Ref. 14 the evolution of the
system was investigated using a multicenter variational ba-
sis. The breakdown of the MDD state and the crossover be-
tween the 5-1 and 6-0 symmetries were identified at �c
=3.05 and 4.03, respectively, at �=1.91, expressed in the
units used in the present work. Due to the semiclassical char-
acter of the model in Ref. 14 the crossover happens only
once, in contrast to the results obtained in the present work.
In our “exact” approach we found the MDD breakdown at
�c=2.72 at �=1.91.

Figure 11 agrees with Fig. 2 of Ref. 9 where � in Ref. 9 is
inversely proportional to our �.

Information about the symmetry of the ground state can
be obtained by investigating the pair-correlation function.
Figure 13 shows the pair-correlation function for several
ground states of the system. Notice how the symmetry of the
state changes with increasing L and how a Wigner crystal
forms �see also Fig. 14�. The mixture of the 5-1 and 6-0
symmetries for L=45 can be observed from the figure as
resulting in a smaller probability to find an electron in the
center of the quantum dot.

After we obtain the information about the symmetry of
the states we are able to fix N−1 electrons at the most prob-
able positions and look at the reduced wave function. Figure
15 shows the phase of the remaining wave function for sev-
eral angular momenta ground states at which the system is
fully polarized. The calculations were done in the LLL. The
rule that applied previously is now slightly changed since
there are two sequences of magic angular momenta. For the
sequence corresponding to the 6-0 symmetry the same rule
still applies. Each time one reaches the next magic angular
momentum one vortex is added inside the polygon of fixed
electrons and five are added outside, which happens five
times before reaching the �= 1

3 state �L=45�. For the se-
quence with 5-1 symmetry each time one reaches the next
magic angular momentum, one vortex is added inside the

FIG. 11. Same as Fig. 10 but now with Zeeman interaction
included.

FIG. 12. The ground state at high magnetic fields. Full polariza-
tion of the spin was assumed and the exact diagonalization was
limited to the LLL. Angular momenta from 25 to 80 are included in
the calculation. A very thin area between the L=39 and 45 states
exists with angular momentum L=40, which is almost invisible in
this graph.
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polygon of fixed electrons and four are added outside. This
happens six times before reaching the �= 1

3 state �L=45�
since the electron that is fixed in the center needs two vorti-
ces before each electron has two vortices associated with it.
The vortices between the fixed electrons always tend to adapt
their positions so as to fit with the external symmetry.

In Fig. 12 the �= 1
3 �L=45� state is clearly more stable

than the other states in the phase diagram. A similar obser-
vation can be made for the N=5 case �L=30� in Fig. 4. In
both cases the fixed electrons and the free vortices form com-
posite fermions, as can be seen from the corresponding plots
of the phase of the reduced wave function. These states ob-

tain a higher compressibility since there are no free vortices
that can restrict the movement of the electrons toward the
center of the dot when the magnetic field is increased. In
other words, due to the formation of a composite fermion the
�= 1

3 state transforms into an effective �*=1 state, forming a
MDD-like state, but for the composite fermions and there-
fore yielding a higher stability. This is also suggested by

FIG. 13. �Color online� Pair-correlation functions for several
ground states at �=1 and �c for which this state is the ground state.
The angular momentum is indicated next to the plots. Notice how a
Wigner crystal forms.

FIG. 14. Radial electron densities as a function of r, the distance
from the center of the dot, at �=1 for several ground states. The
distance is measured in units of l0. Notice how a maximum forms in
the electron density for the states with 5-1 symmetry and how a
minimum forms for those with 6-0 symmetry �L=21�.

FIG. 15. The phase of the reduced wave function for a system of
six electrons for angular momenta ranging from 20 to 50. The N
−1=5 electrons are fixed on the most probable positions and indi-
cated by the small circles. The thick curves indicate the locations in
which the phase jumps by 2�. The vortices are located at the end of
these curves. For L=45 both the 6-0 and 5-1 symmetries are shown.
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formally interpreting L*=L− pN�N−1� with p defined as in
Eq. �1� �in the case of �= 1

3 we have p=1� where L* stands
for the angular momentum of the composite fermions.30 This
latter equation is equivalent to �=�* / �2p�*±1�, which
clearly shows how �*=1 appears. For the �= 1

5 state a similar
argument could be considered but due to the spatial extent of
the �= 1

5 composite fermion �L=50� �see Fig. 7� the effect
will probably be minimal or nonexistent, which agrees with
the observation in the phase diagrams.

Figure 16 shows the electron density at the center of the
quantum dot as a function of the magnetic field. Notice that
the behavior is very different from the N=5 case �Fig. 9� due
to the extra electron, which will cause the density in the
center to increase instead of decreasing when the magnetic
field increases. At L=21 and 39 the density suddenly drops,
which corresponds to the 6-0 phase. At L=45 there is again a
remarkable drop, which originates from the formation of
composite fermions, making the state less Wigner-crystal-
like as explained before. At L=75 a small decrease in density
can be observed which corresponds to the �=1/5 composite
fermion formation. The REM results, which are plotted in
Fig. 16 by the dotted curve, exhibit a similar behavior to the
ED results. The drops in the density at L=21 and 39 corre-
spond to the 6-0 phase and are reproduced approximately by
the REM results. The REM results, however, fail to repro-
duce the drop in the density at L=45 and to a lesser extent
L=75, which originate from the formation of the composite
fermion at �=1/3 and 1/5. From contour plots of the phase
of the reduced wave function we know that in the REM
calculations the vortices do not approach the fixed electrons.
This is, however, the case for the ED calculations. We inter-
pret this discrepancy between the REM and ED results in

Fig. 16 as the inability of the REM to describe composite
fermion formation.

V. CONCLUSIONS

In Ref. 21 a similar system was investigated using both a
spin-density-functional theory �SDFT� technique and an ED
scheme. The ED scheme, using a restricted wave function,
yields results very similar to the ones presented in this paper;
however, the SDFT calculation predicts how the vortices
crystallize into a classical point charge distribution. The
SDFT results did not give any composite fermion formation
and the question remains how to combine these two views.
The same system was investigated in Ref. 22, in which the
vortices were forced to reveal themselves by breaking the
circular symmetry of the system using an elliptic or rectan-
gular potential.

We performed a detailed study of the phase diagram
showing the ground-state configuration as a function of the
interaction parameter � and the magnetic field �c for both
small and large fields. At small fields the system exhibits a
rich structure and several features were explained. At large
fields, after the breakdown of the MDD state, the system will
follow the angular momentum sequence, which for N=6 will
yield a competition between the 6-0 and 5-1 symmetries. We
found the L=39 state appearing in the ground-state sequence
�as will L=21� and that for the L=45 state the 5-1 symmetry
is preferred with the 6-0 being half as probable. A compari-
son with the REM results shows that the latter tends to over-
estimate the “crystal-like” behavior of the system and fails to
capture all the details as shown in the plots of the density at
r=0. At large magnetic fields some states ��= 1

3
� appear to be

more stable than other states. By investigating the vortex
structure this could be explained and an intuitive argument
was given: it is due to the vortices approaching the electron
and forming a composite fermion. These new particles can
be compressed better since they are not hampered by any
free vortices still in the system. For the �= 1

5 states a similar
behavior was observed, but the effect is much smaller than
for �= 1

3 . A clear correspondence between the radial density,
the vortex structure, and the compressibility was observed.
The states without unbound vortices exhibit a better com-
pressibility due to the more liquidlike behavior. It is clear
that the clustering of vortices around the fixed electrons, i.e.,
the formation of composite fermions, is a crucial phenom-
enon in quantum dots and is closely related to the formation
of composite fermions in the fractional quantum Hall effect.
The REM theory fails to describe this clustering and there-
fore also the increased liquidlike behavior of the �= 1

3 state.
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FIG. 16. Electron density at the center of the dot �r=0� for the
ground state of the N=6 system at �=1 as a function of the mag-
netic field. From the L=25 state on, the basis functions have been
restricted to the LLL. The corresponding REM result �dotted curve�
is plotted for L going from 20 to 55. Notice how for the REM case
the density increases almost linearly but fails to capture the details
of the ED result, i.e., the drop in the density at L=45.
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