toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
  Year 2022 Publication Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A  
  Volume 126 Issue 20 Pages 3080-3089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804119800003 Publication Date 2022-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-5639; 1520-5215 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.9  
  Call Number UA @ admin @ c:irua:189023 Serial 7146  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Peeters, F.M.; Hamoudi, H. pdf  doi
openurl 
  Title Effect of edge groups on the electronic transport properties of tetrapodal diazatriptycene molecule Type A1 Journal article
  Year 2022 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 141 Issue Pages 115212-115216  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We conduct ballistic transport calculations to study the electronic transport properties of diazatriptycene molecule which can be self-assembled on metallic surfaces with uniform coverage and upright orientation of the functional head group. Due to its structural asymmetry, the molecule shows a clear current rectification, where the level of the rectification depends on the nature of the head group. For example, current rectification can be increased by more than a factor of 2 by anchoring the molecules to the electrode by CN functional group or introducing insulating CH2 group between the thiol end group and the adjacent phenyl ring. Our findings show the possibility of creating self-assembled monolayer of DAT molecules with controlled electronic transport properties through functionalization of the head group.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000806548600006 Publication Date 2022-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.3  
  Call Number UA @ admin @ c:irua:189041 Serial 7147  
Permanent link to this record
 

 
Author Fatermans, J.; Romolini, G.; Altantzis, T.; Hofkens, J.; Roeffaers, M.B.J.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Atomic-scale detection of individual lead clusters confined in Linde Type A zeolites Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Structural analysis of metal clusters confined in nanoporous materials is typically performed by X-ray-driven techniques. Although X-ray analysis has proved its strength in the characterization of metal clusters, it provides averaged structural information. Therefore, we here present an alternative workflow for bringing the characterization of confined metal clusters towards the local scale. This workflow is based on the combination of aberration-corrected transmission electron microscopy (TEM), TEM image simulations, and powder X-ray diffraction (XRD) with advanced statistical techniques. In this manner, we were able to characterize the clustering of Pb atoms in Linde Type A (LTA) zeolites with Pb loadings as low as 5 wt%. Moreover, individual Pb clusters could be directly detected. The proposed methodology thus enables a local-scale characterization of confined metal clusters in zeolites. This is important for further elucidation of the connection between the structure and the physicochemical properties of such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000809619900001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 2 Open Access OpenAccess  
  Notes The authors acknowledge the Research Foundation Flanders through project fundings (FWO, G026718N, G050218N, ZW15_09-G0H6316N, and W002221N) and through a PhD scholarship to G.R. (grant 11C6920N), as well as iBOF-21-085 PERSIST. T.A. and S.V.A. acknowledge funding from the University of Antwerp Research fund (BOF). J.H. acknowledges the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as MPI fellow. M.R. acknowledges funding by the KU Leuven Research Fund (C14/19/079). S.B. and S.V.A. acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128−REALNANO and No. 770887−PICOMETRICS). The authors thank Dr. D. Chernyshov for the collection of XRD measurements. Approved Most recent IF: 6.7  
  Call Number EMAT @ emat @c:irua:189061 Serial 7076  
Permanent link to this record
 

 
Author Chen, J.; Ying, J.; Xiao, Y.; Dong, Y.; Ozoemena, K., I; Lenaerts, S.; Yang, X. pdf  doi
openurl 
  Title Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation Type A1 Journal article
  Year 2022 Publication Science China : materials Abbreviated Journal Sci China Mater  
  Volume 65 Issue 10 Pages 2685-2693  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Rational composition design of trimetallic phosphide catalysts is of significant importance for enhanced surface reaction and efficient catalytic performance. Herein, hierarchical CoxNiyFezP with precise control of stoichiometric metallic elements (x:y:z = (1-10):(1-10):1) has been synthesized, and Co1.3Ni0.5Fe0.2P, as the most optimal composition, exhibits remarkable catalytic activity (eta = 320 mV at 10 mA cm(-2)) and long-term stability (ignorable decrease after 10 h continuous test at the current density of 10 mA cm(-2)) toward oxygen evolution reaction (OER). It is found that the surface P in Co1.3Ni0.5Fe0.2P was replaced by 0 under the OER process. The density function theory calculations before and after long-term stability tests suggest the clear increasing of the density of states near the Fermi level of Co1.3Ni0.5Fe0.2P/ Co1.3Ni0.5Fe0.2O, which could enhance the OH- adsorption of our electrocatalysts and the corresponding OER performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805530000001 Publication Date 2022-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-8226; 2199-4501 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:189074 Serial 7212  
Permanent link to this record
 

 
Author Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R. pdf  doi
openurl 
  Title From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor Type A1 Journal article
  Year 2022 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 34 Issue 5 Pages 2238-2248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000812125800001 Publication Date 2022-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.6  
  Call Number UA @ admin @ c:irua:189086 Serial 7084  
Permanent link to this record
 

 
Author Girard-Sahun, F.; Lefrancois, P.; Badets, V.; Arbault, S.; Clement, F. pdf  url
doi  openurl
  Title Direct sensing of superoxide and its relatives reactive oxygen and nitrogen species in phosphate buffers during cold atmospheric plasmas exposures Type A1 Journal article
  Year 2022 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 14 Pages 5555-5565  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This study aims at sensing in situ reactive oxygen and nitrogen species (RONS) and specifically superoxide anion (O-2(center dot-)) in aqueous buffer solutions exposed to cold atmospheric plasmas (CAPs). CAPs were generated by ionizing He gas shielded with variable N-2/O-2 mixtures. Thanks to ultramicroelectrodes protected against the high electric fields transported by the ionization waves of CAPs, the production of superoxide and several RONS was electrochemically directly detected in liquids during their plasma exposure. Complementarily, optical emissive spectroscopy (OES) was used to study the plasma phase composition and its correlation with the chemistry in the exposed liquid. The specific production of O-2(center dot-), a biologically reactive redox species, was analyzed by cyclic voltammetry (CV), in both alkaline (pH 11), where the species is fairly stable, and physiological (pH 7.4) conditions, where it is unstable. To understand its generation with respect to the plasma chemistry, we varied the shielding gas composition of CAPs to directly impact on the RONS composition at the plasma-liquid interface. We observed that the production and accumulation of RONS in liquids, including O(2)(center dot-)depends on the plasma composition, with N-2-based shieldings providing the highest superoxide concentrations (few 10s of micromolar at most) and of its derivatives (hundreds of micromolar). In situ spectroscopic and electrochemical analyses provide a high resolution kinetic and quantitative understanding of the interactions between CAPs and physiological solutions for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000805334400013 Publication Date 2022-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:189093 Serial 7143  
Permanent link to this record
 

 
Author Borah, R. url  openurl
  Title Photoactive nanostructures : from single plasmonic nanoparticles to self-assembled films Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xxxiv, 220 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photoactive nanoparticles and their light-driven applications have gained tremendous scientific attention towards remediation of the global environmental problems, meeting alternative energy demands, and other new technological discoveries. The research work presented in this dissertation includes a fundamental investigation of such nanoparticles to gain deeper insights that will ultimately benefit their application. In particular, the study of plasmonic metal nanoparticles and metal oxide nanoparticles for light driven applications is the major theme of this work. The investigation begins with isolated plasmonic Au and Ag nanoparticles, followed by a natural extension to nanoparticle clusters, and then further to nanoparticle films. Next, the application of such plasmonic nanoparticle films for gaseous phase sensing of volatile organic compounds is explored. Finally, the film formation of metal-oxide nanoparticles by self-assembly is investigated for the fabrication of photoactive functional interfaces. The fundamental theoretical investigation of the isolated plasmonic nanoparticles encompasses alloy and core-shell nanostructures of Au-Ag bimetallic compositions. First, the optical properties of bimetallic alloy and core-shell nanoparticles are compared for different structures such as nanospheres, nanotriangles and nanorods. Based on the optical properties, the photothermal properties of these nanostructures are also evaluated for relevant light-driven applications. Further, to bridge the gap between the theoretical and experimental optical properties of colloidal plasmonic nanoparticles, the effect of different statistical parameters pertaining to the particle size distribution is studied. Going from isolated nanoparticles to nanoparticle clusters, the changes in the optical properties of plasmonic nanoparticles when they form finite clusters is investigated. A strong effect of clustering on the absorption intensities of the nanoparticles and hence, on the photothermal properties is found. Next, for the study of plasmonic nanoparticle infinite arrays, Au and Ag nanoparticles films are experimentally obtained by the self-assembly at the air-ethylene glycol interface. Upon further validation of the computational models with the experimental optical properties of these films, the near-field and far-field optical response of the plasmonic nanoparticle arrays is investigated. An application of the self-assembled Au nanoparticle film is then demonstrated in the sensing of volatile organic compounds (VOCs). Finally, the focus is shifted from plasmonic nanoparticles to metal oxide nanoparticles for their self-assembly at the air-water interface to obtain self-assembled films. For this, the hydrophobic functionalization of four metal oxides nanoparticles namely, TiO2, ZnO, WO3 and CuO is investigated. The insights from this work is useful for the design and fabrication of functional nanoparticles and interfaces for light driven applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189155 Serial 7188  
Permanent link to this record
 

 
Author Magalhães Cunha, S. url  openurl
  Title Wave-packet dynamics and electronic transport properties in 2D materials Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 219 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract This piece of work is twofold. First, the time evolution of wave-packets in 2D systems is analyzed by the Split-Operator technique in three different scenarios: in multilayer phosphorene, the transient oscillations in the time-dependent average of position and momentum were observed due to the zitterbewegung effect, and the wave packet propagates non-uniformly along the space deforming itself into an elliptical shape. These results were corroborated by the Green’s function formalism except for large values of the wave-vector and long times; in 2D semiconductor quantum wires (QWs) with anisotropic effective masses and different angle orientations with respect to the anisotropic axis. We have shown that the greater this angle, the smaller is the energy levels spacing implying in an increase of the accessible electronic states. Additionally, for non-null magnetic field, the quantum Hall edge states are significantly affected by the edge orientation. In the anisotropic case damped oscillations in the average values of velocity in both x and y directions where obtained. Theses oscillations are originated by the QW geometry but also from subwavepackets with different momentum orientations, whereas for isotropic QWs the wavepacket disperses without splitting; in the third scenario the split-operator technique was used to study the Landau levels, the wave packet trajectories and velocities of electrons in graphene at low-energy regime described by a modified Dirac equation where the momentum-operator is written in a generalized form as result of applying the position-dependent translation operator formalism (PDTO). In the second part of this thesis, the electronic and tunneling properties of α − T3 lattices were studied. Electrons in these lattices behave analogous to integer-spin Dirac Fermions. The presence of a third atomic site in the unit cell leads to a flat band in the energy spectrum, providing unique electronic and tunneling properties. The presence of a super-periodic potential and the inclusion of symmetry-breaking terms results in deviations of the atomic equivalence between the atomic sites affecting the Dirac points and the band-gap. Small deviations in the equivalence between the atomic sites and the number of barriers change the transmission properties in these lattices. Additionally, new tunneling regions are possible by adjusting the symmetry between the atomic sites and affect the omnidirectional total transmission called super-Klein tunneling observed in these lattices. We compare those results to the tunneling probabilities through regions where the energy spectrum changes from linear with a middle flat band to a hyperbolic dispersion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189191 Serial 7227  
Permanent link to this record
 

 
Author Lamonier, J.-F.; Bogaerts, A. pdf  url
doi  openurl
  Title Feature Papers to Celebrate “Environmental Catalysis”—Trends & Outlook Type Editorial
  Year 2022 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 12 Issue 7 Pages 720  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This Special Issue collects three reviews, eight articles, and two communications related to the design of catalysts for environmental applications, such as the transformation of several pollutants into harmless or valuable products [...]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831734700001 Publication Date 2022-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number PLASMANT @ plasmant @c:irua:189202 Serial 7074  
Permanent link to this record
 

 
Author Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; Choi, E.H.; Coulombe, S.; Donkó, Z.; Graves, D.B.; Hamaguchi, S.; Hegemann, D.; Hori, M.; Kim, H.-h; Kroesen, G.M.W.; Kushner, M.J.; Laricchiuta, A.; Li, X.; Magin, T.E.; Mededovic Thagard, S.; Miller, V.; Murphy, A.B.; Oehrlein, G.S.; Puac, N.; Sankaran, R.M.; Samukawa, S.; Shiratani, M.; Šimek, M.; Tarasenko, N.; Terashima, K.; Thomas Jr, E.; Trieschmann, J.; Tsikata, S.; Turner, M.M.; van der Walt, I.J.; van de Sanden, M.C.M.; von Woedtke, T. pdf  url
doi  openurl
  Title The 2022 Plasma Roadmap: low temperature plasma science and technology Type A1 Journal article
  Year 2022 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 55 Issue 37 Pages 373001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by<italic>Journal of Physics</italic>D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000821410400001 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Grants-in-Aid for Scientific Research, 15H05736 ; FCT-Fundação para a Ciência e a Tecnologia, UIDB/50010/2020 ; Russian Foundation for Basic Research, 20-02-00320 ; Lam Research Corporation; National Office for Research, Development, and Innovation of Hungary, K-134462 ; Czech Science Foundation, GA 18-04676S ; Japan Society for the Promotion of Science, 20H00142 ; MESTD of Republic of Serbia, 451-03-68/2021-14/200024 ; NASA; Dutch Foundation for Scientific Research; U.S. National Science Foundation, CBET 1703439 ; U.S. Department of Energy, DE-SC-0001234 ; Grantová Agentura České Republiky, GA 18-04676S ; Army Research Office, W911NF-20-1-0105 ; National Natural Science Foundation of China, 51825702 ; European Research Council, Starting Grant #259354 ; European Space Agency, GSTP ; U.S. Air Force Office of Scientific Research, FA9550-17-1-0370 ; Safran Aircraft Engines, POSEIDON ; Agence Nationale de la Recherche, ANR-16-CHIN-003–01 ; H2020 European Research Council, ERC Synergy Grant 810182 SCOPE ; JST CREST, JPMJCR19R3 ; Federal German Ministry of Education and Research, 03Z22DN11 ; National Research Foundation of Korea, 2016K1A4A3914113 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021_169180 ; Departament d’Innovació, Universitats i Empresa, Generalitat de Catalunya, SGR2017-1165 ; Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; Deutsche Forschungsgemeinschaft, 138690629 – TRR 87 ; Grant-in-Aid for Exploratory Research, 18K18753 ; Approved Most recent IF: 3.4  
  Call Number PLASMANT @ plasmant @c:irua:189203 Serial 7075  
Permanent link to this record
 

 
Author Lang, X.; Ouyang, Y.; Vandewalle, L.A.; Goshayeshi, B.; Chen, S.; Madanikashani, S.; Perreault, P.; Van Geem, K.M.; van Geem, K.M. pdf  url
doi  openurl
  Title Gas-solid hydrodynamics in a stator-rotor vortex chamber reactor Type A1 Journal article
  Year 2022 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 446 Issue 5 Pages 137323-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The gas-solid vortex reactor (GSVR) has enormous process intensification potential. However the huge gas consumption can be a serious disadvantage for the GSVR in some applications such as fast pyrolysis. In this work, we demonstrate a recent novel design, where a stator-rotor vortex chamber (STARVOC) is driven by the fluid's kinetic energy, to decouple the solids bed rotation and gas. Gas-solid fluidization by using air and monosized aluminum balls was performed to investigate the hydrodynamics. A constructed fluidization flow regime map for a fixed solids loading of 100 g shows that the bed can only be fluidized for a rotation speed between 200 and 400 RPM. Below 200 RPM, particles settle down on the bottom plate and cannot form a stable bed due to inertia and friction. Above 400 RPM, the bed cannot be fluidized with superficial velocities up to 1.8 m/s (air flow rate of 90 Nm(3)/h). The bed thickness shows some non-uniformities, being smaller at the top of the bed than at the bottom counterpart. However by increasing the air flow rate or rotation speed the axial nonuniformity can be resolved. The bed pressure drop first increases with increasing gas flow rate and then levels off, showing similar characteristics as conventional fluidized beds. Theoretical pressure drops calculated from mathematical models such as Kao et al. model agree well with experimental measurements. Particle velocity discrepancies between the top and bottom particles reveal that the impact of gravity cannot be completely neglected. Design guidelines and possible applications for further development of STARVOC concept are proposed based on fundamental data provided in this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000833418100006 Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189283 Serial 7167  
Permanent link to this record
 

 
Author Van Hoecke, L.; Boeye, D.; Gonzalez‐Quiroga, A.; Patience, G.S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental methods in chemical engineering : computational fluid dynamics/finite volume method–CFD/FVM Type A1 Journal article
  Year 2022 Publication The Canadian journal of chemical engineering Abbreviated Journal Can J Chem Eng  
  Volume Issue Pages 1-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Computational fluid dynamics (CFD) applies numerical methods to solve transport phenomena problems. These include, for example, problems related to fluid flow comprising the Navier--Stokes transport equations for either compressible or incompressible fluids together with turbulence models and continuity equations for single and multi-component (reacting and inert) systems. The design space is first segmented into discrete volume elements (meshing). The finite volume method, the subject of this article, discretizes the equations in time and space to produce a set of non-linear algebraic expressions that are assigned to each volume element-cell. The system of equations is solved iteratively with algorithms like the semi-implicit method for pressure-linked equations (SIMPLE) and the pressure implicit splitting of operators (PISO). CFD is especially useful for testing multiple design elements because it is often faster and cheaper than experiments. The downside is that this numerical method is based on models that require validation to check their accuracy. According to a bibliometric analysis, the broad research domains in chemical engineering include: (1) dynamics and CFD-DEM (2) fluid flow, heat transfer and turbulence, (3) mass transfer and combustion, (4) ventilation and environment, and (5) design and optimization. Here, we review the basic theoretical concepts of CFD and illustrate how to set up a problem in the open-source software OpenFOAM to isomerize n-butane to i-butane in a notched reactor under turbulent conditions. We simulated the problem with 1000, 4000, and 16000 cells. According to the Richardson extrapolation, the simulation underestimates the adiabatic temperature rise by 7% with 16000 cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000859840100001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4034; 1939-019x ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.1  
  Call Number UA @ admin @ c:irua:189284 Serial 7160  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Shi, P.; Gielis, J.; Quinn, B.K.; Niklas, K.J.; Ratkowsky, D.A.; Schrader, J.; Ruan, H.; Wang, L.; Niinemets, Ü.; Niinennets, U. url  doi
openurl 
  Title ‘biogeom’ : an R package for simulating and fitting natural shapes Type A1 Journal article
  Year 2022 Publication Annals of the New York Academy of Sciences Abbreviated Journal Ann Ny Acad Sci  
  Volume 1516 Issue 1 Pages 123-134  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many natural objects exhibit radial or axial symmetry in a single plane. However, a universal tool for simulating and fitting the shapes of such objects is lacking. Herein, we present an R package called 'biogeom' that simulates and fits many shapes found in nature. The package incorporates novel universal parametric equations that generate the profiles of bird eggs, flowers, linear and lanceolate leaves, seeds, starfish, and tree-rings, and three growth-rate equations that generate the profiles of ovate leaves and the ontogenetic growth curves of animals and plants. 'biogeom' includes several empirical datasets comprising the boundary coordinates of bird eggs, fruits, lanceolate and ovate leaves, tree rings, seeds, and sea stars. The package can also be applied to other kinds of natural shapes similar to those in the datasets. In addition, the package includes sigmoid curves derived from the three growth-rate equations, which can be used to model animal and plant growth trajectories and predict the times associated with maximum growth rate. 'biogeom' can quantify the intra- or interspecific similarity of natural outlines, and it provides quantitative information of shape and ontogenetic modification of shape with important ecological and evolutionary implications for the growth and form of the living world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000829772300001 Publication Date 2022-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0077-8923; 1749-6632 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number UA @ admin @ c:irua:189314 Serial 7131  
Permanent link to this record
 

 
Author Wang, L.; Miao, Q.; Niinemets, Ü.; Gielis, J.; Shi, P. url  doi
openurl 
  Title Quantifying the variation in the geometries of the outer rims of corolla tubes of Vinca major L Type A1 Journal article
  Year 2022 Publication Plants Abbreviated Journal  
  Volume 11 Issue 15 Pages 1987-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Many geometries of plant organs can be described by the Gielis equation, a polar coordinate equation extended from the superellipse equation, . Here, r is the polar radius corresponding to the polar angle φ; m is a positive integer that determines the number of angles of the Gielis curve when φ ∈ [0 to 2π); and the rest of the symbols are parameters to be estimated. The pentagonal radial symmetry of calyxes and corolla tubes in top view is a common feature in the flowers of many eudicots. However, prior studies have not tested whether the Gielis equation can depict the shapes of corolla tubes. We sampled randomly 366 flowers of Vinca major L., among which 360 had five petals and pentagonal corolla tubes, and six had four petals and quadrangular corolla tubes. We extracted the planar coordinates of the outer rims of corolla tubes (in top view) (ORCTs), and then fitted the data with two simplified versions of the Gielis equation with k = 1 and m = 5: (Model 1), and (Model 2). The adjusted root mean square error (RMSEadj) was used to evaluate the goodness of fit of each model. In addition, to test whether ORCTs are radially symmetrical, we correlated the estimates of n2 and n3 in Model 1 on a log-log scale. The results validated the two simplified Gielis equations. The RMSEadj values for all corolla tubes were smaller than 0.05 for both models. The numerical values of n2 and n3 were demonstrated to be statistically equal based on the regression analysis, which suggested that the ORCTs of V. major are radially symmetrical. It suggests that Model 1 can be replaced by the simpler Model 2 for fitting the ORCT in this species. This work indicates that the pentagonal or quadrangular corolla tubes (in top view) can both be modeled by the Gielis equation and demonstrates that the pentagonal or quadrangular corolla tubes of plants tend to form radial symmetrical geometries during their development and growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839115100001 Publication Date 2022-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189315 Serial 7200  
Permanent link to this record
 

 
Author Gielis, J.; Grigolia, R. url  openurl
  Title Lamé curves and Rvachev's R-functions Type A3 Journal article
  Year 2022 Publication Sn – 1512-0066 Abbreviated Journal  
  Volume 37 Issue Pages 1-4  
  Keywords A3 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gielis transformations are a generalization of Lame curves. To combine domains, we can make use of the natural alliance between Lame's work and Rvachev's R-functions. A logical next step is the extension to n-valued logic dening dierent partitions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189316 Serial 7178  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Caratelli, D. openurl 
  Title Universal equations : a fresh perspective Type A1 Journal article
  Year 2022 Publication Growth and Form Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A uniform description of natural shapes and phenomena is an important goal in science. Such description should check some basic principles, related to 1) the complexity of the model, 2) how well its fits real objects, phenomena and data, and 3) ia direct connection with optimization principles and the calculus of variations. In this article, we present nine principles, three for each group, and we compare some models with a claim to universality. It is also shown that Gielis Transformations and power laws have a common origin in conic sections  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (up) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189317 Serial 7224  
Permanent link to this record
 

 
Author Brienza, F.; Van Aelst, K.; Devred, F.; Magnin, D.; Tschulkow, M.; Nimmegeers, P.; Van Passel, S.; Sels, B.F.; Gerin, P.; Debecker, D.P.; Cybulska, I. pdf  url
doi  openurl
  Title Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 450 Issue 3 Pages 138179-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract The development of biomass pretreatment approaches that, next to (hemi)cellulose valorization, aim at the conversion of lignin to chemicals is essential for the long-term success of a biorefinery. Herein, we discuss a dithionite-assisted organosolv fractionation (DAOF) of lignocellulose in n-butanol and water to produce cellulosic pulp and mono-/oligo-aromatics. The study frames the technicalities of this biorefinery process and relates them to the features of the obtained product streams. We comprehensively identify and quantify all products of interest: solid pulp (acid hydrolysis-HPLC, ATR-FTIR, XRD, SEM, enzymatic hydrolysis-HPLC), lignin derivatives (GPC, GC-MS/FID, 1H-13C HSQC NMR, ICP-AES), and carbohydrate derivatives (HPLC). These results were used for inspecting the economic feasibility of DAOF. In the best process configuration, a high yield of monophenolics was reached (~20%, based on acid insoluble lignin in birch sawdust). Various other lignocellulosic feedstocks were also explored, showing that DAOF is particularly effective on hardwood and herbaceous biomass. Overall, this study demonstrates that DAOF is a viable fractionation method for the sustainable upgrading of lignocellulosic biomass.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888204900005 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 15.1  
  Call Number UA @ admin @ c:irua:189322 Serial 7373  
Permanent link to this record
 

 
Author Ngo, K.N.; Tampon, P.; Van Winckel, T.; Massoudieh, A.; Sturm, B.; Bott, C.; Wett, B.; Murthy, S.; Vlaeminck, S.E.; DeBarbadillo, C.; De Clippeleir, H. pdf  url
doi  openurl
  Title Introducing bioflocculation boundaries in process control to enhance effluent quality of high‐rate contact‐stabilization systems Type A1 Journal article
  Year 2022 Publication Water environment research Abbreviated Journal Water Environ Res  
  Volume 94 Issue 8 Pages e10772-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract High-rate activated sludge (HRAS) systems suffer from high variability of effluent quality, clarifier performance, and carbon capture. This study proposed a novel control approach using bioflocculation boundaries for wasting control strategy to enhance effluent quality and stability while still meeting carbon capture goals. The bioflocculation boundaries were developed based on the oxygen uptake rate (OUR) ratio between contactor and stabilizer (feast/famine) in a high-rate contact stabilization (CS) system and this OUR ratio was used to manipulate the wasting setpoint. Increased oxidation of carbon or decreased wasting was applied when OUR ratio was <0.52 or >0.95 to overcome bioflocculation limitation and maintain effluent quality. When no bioflocculation limitations (OUR ratio within 0.52–0.95) were detected, carbon capture was maximized. The proposed control concept was shown for a fully automated OUR-based control system as well as for a simplified version based on direct waste flow control. For both cases, significant improvements in effluent suspended solids level and stability (<50-mg TSS/L), solids capture over the clarifier (>90%), and COD capture (median of 32%) were achieved. This study shows how one can overcome the process instability of current HRAS systems and provide a path to achieve more reliable outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000840360100001 Publication Date 2022-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1061-4303; 1554-7531 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:189409 Serial 7174  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Rutten, R.; De Wael, K. pdf  url
doi  openurl
  Title Novel (photo)electrochemical analysis of aqueous industrial samples containing phenols Type A1 Journal article
  Year 2022 Publication Microchemical journal Abbreviated Journal  
  Volume 181 Issue Pages 107778-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Phenols are considered as toxic pollutants and their discharge into the environment by industries is regulated by a concentration limit. As these limits are in the low mg L−1 to µg L−1-range, sensitive methods are necessary to detect these phenols. Here, aqueous industrial phenolic samples throughout a cleaning process were analyzed by two novel electrochemical sensors. Both the photoelectrochemical (PEC) sensor and the square wave voltammetric (SWV) sensor could successfully follow the decrease of the concentration of phenols along the industrial cleaning process. The discharge sample (μg L−1) could only be analyzed by the PEC sensor and not by the SWV sensor, as the phenolic concentration was close to the LOD of the latter. With HPLC-diode array detector (DAD) measurements, classical phenols such as phenol (PHOH), hydroquinone, resorcinol and o-cresol could be identified in the industrial samples, and their presence could be linked to the electrochemical responses. At last, the performance of the PEC and SWV sensors were compared with commercial colorimetric and chemical oxygen demand (COD) test kits. This comparison demonstrated the high sensitivity of the PEC sensor in the μg L−1 concentrated phenolic samples. Together with the identification of the redox peaks through HPLC-DAD analysis, the SWV sensor can be a powerful tool in the qualitative analysis of mg L−1 concentrated phenolic samples due to its speed, simplicity and absence of laborious sample pre-treatment steps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000837838400003 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:189428 Serial 8906  
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeek, J.; Pennycook, T.; Van Aert, S. pdf  url
doi  openurl
  Title Phase retrieval from 4-dimensional electron diffraction datasets Type P1 Proceeding
  Year 2021 Publication Proceedings T2 – IEEE International Conference on Image Processing (ICIP), SEP 19-22, 2021, Electr. network Abbreviated Journal  
  Volume Issue Pages 3453-3457  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present a computational imaging mode for large scale electron microscopy data, which retrieves a complex wave from noisy/sparse intensity recordings using a deep learning approach and subsequently reconstructs an image of the specimen from the Convolutional Neural Network (CNN) predicted exit waves. We demonstrate that an appropriate forward model in combination with open data frameworks can be used to generate large synthetic datasets for training. In combination with augmenting the data with Poisson noise corresponding to varying dose-values, we effectively eliminate overfitting issues. The U-NET[1] based architecture of the CNN is adapted to the task at hand and performs well while maintaining a relatively small size and fast performance. The validity of the approach is confirmed by comparing the reconstruction to well-established methods using simulated, as well as real electron microscopy data. The proposed method is shown to be effective particularly in the low dose range, evident by strong suppression of noise, good spatial resolution, and sensitivity to different atom types, enabling the simultaneous visualisation of light and heavy elements and making different atomic species distinguishable. Since the method acts on a very local scale and is comparatively fast it bears the potential to be used for near-real-time reconstruction during data acquisition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819455103114 Publication Date 2021-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-6654-4115-5 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189462 Serial 7089  
Permanent link to this record
 

 
Author Ysebaert, T.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Parameterisation of the drag effect of climbers depending on wind speed and LAD Type A1 Journal article
  Year 2022 Publication Sustainable Cities and Society Abbreviated Journal Sustain Cities Soc  
  Volume 84 Issue Pages 103979-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The implementation of green walls is increasingly seen as a strategy to tackle urban air pollution and to make cities more climate resilient. The correct description of the vegetation-wind interaction is key in describing the effect of vegetation in computational fluid dynamics (CFD) models. The accuracy of the modelled wind flow is highly linked to the uncertainty about the drag coefficient (C-d). In addition, at low wind speeds viscous drag (K) is not negligible and it should be regarded in CFD models. This research aims to address the uncertainty related to C-d and K by including the effect of climbers on both the momentum and turbulence equations in the Wilcox revised k-omega model. The change of K with increasing Reynolds number showed an increase from 5.10(-8 )m(2) up to the dynamic viscosity of air (asymptotic to 10(-5) m(2)) following a logistic function. Beyond the transition region from viscous to form drag, C-d, in the range of 0.1-1.1, declined with increasing Reynolds number following a power law function. Furthermore, the plant morphological parameters determining permeability and drag coefficient were identified. This study showed that the knowledge of viscous and shape resistance is necessary to obtain accurate statistics for air flow through vegetation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831685500001 Publication Date 2022-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.7  
  Call Number UA @ admin @ c:irua:189465 Serial 7187  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Quintelier, M.; Perkisas, T.; Poppe, R.; Batuk, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Determination of spinel content in cycled Li1.2Ni0.13Mn0.54Co0.13O2 using three-dimensional electron diffraction and precession electron diffraction Type A1 Journal article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 1989-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Among lithium battery cathode materials, Li1.2Ni0.13Mn0.54Co0.13O2 (LR-NMC) has a high theoretical capacity, but suffers from voltage and capacity fade during cycling. This is partially ascribed to transition metal cation migration, which involves the local transformation of the honeycomb layered structure to spinel-like nano-domains. Determination of the honeycomb layered/spinel phase ratio from powder X-ray diffraction data is hindered by the nanoscale of the functional material and the domains, diverse types of twinning, stacking faults, and the possible presence of the rock salt phase. Determining the phase ratio from transmission electron microscopy imaging can only be done for thin regions near the surfaces of the crystals, and the intense beam that is needed for imaging induces the same transformation to spinel as cycling does. In this article, it is demonstrated that the low electron dose sufficient for electron diffraction allows the collection of data without inducing a phase transformation. Using calculated electron diffraction patterns, we demonstrate that it is possible to determine the volume ratio of the different phases in the particles using a pair-wise comparison of the intensities of the reflections. Using this method, the volume ratio of spinel structure to honeycomb layered structure is determined for a submicron sized crystal from experimental three-dimensional electron diffraction (3D ED) and precession electron diffraction (PED) data. Both twinning and the possible presence of the rock salt phase are taken into account. After 150 charge-discharge cycles, 4% of the volume in LR-NMC particles was transformed irreversibly from the honeycomb layered structure to the spinel structure. The proposed method would be applicable to other multi-phase materials as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000815310500001 Publication Date 2021-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 1.457 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.457  
  Call Number UA @ admin @ c:irua:189468 Serial 7080  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Influence of adding low concentration of oxygenates in mineral diesel oil and biodiesel on the concentration of NO, NO₂ and particulate matter in the exhaust gas of a one-cylinder diesel generator Type A1 Journal article
  Year 2022 Publication International journal of environmental research and public health Abbreviated Journal  
  Volume 19 Issue 13 Pages 7637-18  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air quality currently poses a major risk to human health worldwide. Transportation is one of the principal contributors to air pollution due to the quality of exhaust gases. For example, the widely used diesel fuel is a significant source of nitrogen oxides (NOx) and particulate matter (PM). To reduce the content NOx and PM, different oxygenated compounds were mixed into a mineral diesel available at the pump, and their effect on the composition of exhaust gas emissions was measured using a one-cylinder diesel generator. In this setup, adding methanol gave the best relative results. The addition of 2000 ppm of methanol decreased the content of NO by 56%, 2000 ppm of isopropanol decreased NO2 by 50%, and 2000 ppm ethanol decreased PM by 63%. An interesting question is whether it is possible to reduce the impact of hazardous components in the exhaust gas even more by adding oxygenates to biodiesels. In this article, alcohol is added to biodiesel in order to establish the impact on PM and NOx concentrations in the exhaust gases. Adding methanol, ethanol, and isopropanol at concentrations of 2000 ppm and 4000 ppm did not improve NOx emissions. The best results were using pure RME for a low NO content, pure diesel for a low NO2 content, and for PM there were no statistically significant differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000825645900001 Publication Date 2022-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1661-7827; 1660-4601 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189476 Serial 7172  
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R. url  doi
openurl 
  Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 22 Issue 15 Pages 6268-6275  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831832100001 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 8 Open Access OpenAccess  
  Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8  
  Call Number UA @ admin @ c:irua:189495 Serial 7077  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Axion insulator states in a topological insulator proximitized to magnetic insulators : a tight-binding characterization Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 074205-74208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The recent discovery of axion states in materials such as antiferromagnetic topological insulators has boosted investigations of the magnetoelectric response in topological insulators and their promise towards realizing dissipationless topological electronics. In this paper, we develop a tight-binding methodology to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on the top and bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking perturbation due to the proximity of a magnetic insulator, and a gap is opened on the surfaces, giving rise to half-quantized Hall conductance and a zero Hall plateau-evidencing an axion insulator state. We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Transport properties of the system were obtained within the Landauer-Buttiker formalism, and we discuss the creation of axion states through Hall conductance and a zero Hall plateau at the surfaces, as a function of proximitized magnetization and corresponding potentials at the surfaces, as well as the thickness of the topological insulator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832387000006 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189498 Serial 7130  
Permanent link to this record
 

 
Author Wang, Y.; Chen, Y.; Harding, J.; He, H.; Bogaerts, A.; Tu, X. pdf  url
doi  openurl
  Title Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 450 Issue Pages 137860  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Direct conversion of CH4 and CO2 to liquid fuels and chemicals under mild conditions is appealing for biogas conversion and utilization but challenging due to the inert nature of both gases. Herein, we report a promising plasma process for the catalyst-free single-step conversion of CH4 and CO2 into higher value oxygenates (i.e., methanol, acetic acid, ethanol, and acetone) at ambient pressure and room temperature using a water-cooled dielectric barrier discharge (DBD) reactor, with methanol being the main liquid product. The distribution of liquid products could be tailored by tuning the discharge power, reaction temperature and residence time. Lower discharge powers (10–15 W) and reaction temperatures (5–20 ◦ C) were favourable for the production of liquid products, achieving the highest methanol selectivity of 43% at 5 ◦ C and 15 W. A higher discharge power and reaction temperature, on the other hand, produced more gaseous products, particularly H2 (up to 26% selec­tivity) and CO (up to 33% selectivity). In addition, varying these process parameters (discharge power, reaction temperature and residence time) resulted in a simultaneous change in key discharge properties, such as mean electron energy (Ee), electron density (ne) and specific energy input (SEI), all of which are essential determiners of plasma chemical reactions. According to the results of artificial neural network (ANN) models, the relative importance of these process parameters and key discharge indicators on reaction performance follows the order: discharge power > reaction temperature > residence time, and SEI > ne > Ee, respectively. This work provides new insights into the contributions and tuning mechanism of multiple parameters for optimizing the reaction performance (e.g., liquid production) in the plasma gas conversion process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000830813300004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 813393. Approved Most recent IF: 15.1  
  Call Number PLASMANT @ plasmant @c:irua:189502 Serial 7100  
Permanent link to this record
 

 
Author Abedi, S.; Sisakht, E.T.; Hashemifar, S.J.; Cherati, N.G.; Sarsari, I.A.; Peeters, F.M. doi  openurl
  Title Prediction of novel two-dimensional Dirac nodal line semimetals in Al₂B₂ and AlB₄ monolayers Type A1 Journal article
  Year 2022 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 14 Issue 31 Pages 11270-11283  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831003900001 Publication Date 2022-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links (up) UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.7  
  Call Number UA @ admin @ c:irua:189505 Serial 7196  
Permanent link to this record
 

 
Author Van Schoubroeck, S.; Vermeyen, V.; Alaerts, L.; Van Acker, K.; Van Passel, S. pdf  url
doi  openurl
  Title How to monitor the progress towards a circular food economy : a Delphi study Type A1 Journal article
  Year 2022 Publication Sustainable Production and Consumption Abbreviated Journal  
  Volume 32 Issue Pages 457-467  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Within the food sector, the implementation of a circular economy (CE) can reduce resource consumption and emissions to the environment by moving away from a linear and unsustainable system. This necessitates a clear vision on what circularity for food means, which will provide a much-needed foundation to develop a mon-itoring tool that reveals insights into the progress being made towards a CE, and to expose the bottlenecks and opportunities. This research study contributes to the development of a shared vision for circularity within the food system, and defines and prioritizes a set of indicator themes to monitor a circular food economy (CFE). A two-round Delphi study was performed, including a brainstorming session with experts and the construction of a consensus ranking of indicator themes, considering the production and processing and the consumption stage. The Delphi results provide a shared vision on a CFE, and a blueprint for researchers and policy-makers on its monitoring, which will stimulate the progression from a linear to a circular system.(c) 2022 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000806368300009 Publication Date 2022-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-5509 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.1  
  Call Number UA @ admin @ c:irua:189513 Serial 7360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: