|
Record |
Links |
|
Author |
Hao, Y.; Velpula, G.; Kaltenegger, M.; Bodlos, W.R.; Vibert, F.; Mali, K.S.; De Feyter, S.; Resel, R.; Geerts, Y.H.; Van Aert, S.; Beljonne, D.; Lazzaroni, R. |
|
|
Title |
From 2D to 3D : bridging self-assembled monolayers to a substrate-induced polymorph in a molecular semiconductor |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Chemistry of materials |
Abbreviated Journal |
Chem Mater |
|
|
Volume |
34 |
Issue |
5 |
Pages |
2238-2248 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000812125800001 |
Publication Date |
2022-02-17 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756; 1520-5002 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.6 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 8.6 |
|
|
Call Number |
UA @ admin @ c:irua:189086 |
Serial |
7084 |
|
Permanent link to this record |