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ABSTRACT

We present a computational imaging mode for large scale

electron microscopy data, which retrieves a complex wave

from noisy/sparse intensity recordings using a deep learning

approach and subsequently reconstructs an image of the spec-

imen from the Convolutional Neural Network (CNN) pre-

dicted exit waves. We demonstrate that an appropriate for-

ward model in combination with open data frameworks can be

used to generate large synthetic datasets for training. In com-

bination with augmenting the data with Poisson noise cor-

responding to varying dose-values, we effectively eliminate

overfitting issues. The U-NET[1] based architecture of the

CNN is adapted to the task at hand and performs well while

maintaining a relatively small size and fast performance. The

validity of the approach is confirmed by comparing the re-

construction to well-established methods using simulated, as

well as real electron microscopy data. The proposed method

is shown to be effective particularly in the low dose range, ev-

ident by strong suppression of noise, good spatial resolution,

and sensitivity to different atom types, enabling the simulta-

neous visualisation of light and heavy elements and making

different atomic species distinguishable. Since the method

acts on a very local scale and is comparatively fast it bears the

potential to be used for near-real-time reconstruction during

data acquisition.

Index Terms— phase retrieval, inverse problem, electron

diffraction, 4D-STEM, CBED

1. INTRODUCTION

Transmission electron microscopy (TEM), and particularly

scanning transmission electron microscopy (STEM) is one of

the most powerful and versatile tools for material characteri-

sation at the atomic scale. The increasing amount of charac-

terisation techniques and the improving quality of collected

data has been strongly linked to technological advancements,

not only in the area of electron optics, but also in the field of

detector systems [2].

Conventional electron detectors, such as annular bright

field (ABF) or annular dark field (ADF), cover certain angu-

lar regions in reciprocal space and collect electrons scattered
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to corresponding scattering angles after their interaction with

the specimen. By scanning the probe over the specimen, such

a detector records a single integrated value for every position

on the scan grid. This results in a 2-dimensional map of in-

tensity values, from which we can deduce the positions and

possibly also the types of the atoms under study [3]. The pos-

sibility of recording full, high-quality diffraction patterns in

a reasonably short time is relatively recent and resulted in a

whole new set of opportunities and challenges. Every scan

point in a STEM experiment (2 spatial dimensions) contains

a full diffraction pattern (2 dimensions in reciprocal space),

thus providing a very large amount of information and po-

tentially very large 4-dimensional (4D) datasets. One of the

main challenges, dealing with this kind of data is the efficient

and targeted extraction of information to translate a higher-

dimensional dataset to a lower-dimensional one that is easy

to interpret. Some existing methods include center-of-mass

[4] and integrated-center-of-mass [5] imaging, as well as pty-

chographical methods, which can be computationally expen-

sive [6, 7], may discard some of the information present in

the diffraction patterns [8], potentially amplify noise in low-

dose experiments [9] or vary in their applicability due to con-

straining underlying model assumptions [6]. In this paper, we

present a new method of handling 4D datasets, which aims at

constructing a phase image of the specimen. To have full flex-

ibility in the number of scan points included in the dataset, we

design the network to retrieve the phase and the amplitude of

one convergent beam electron diffraction (CBED)-pattern at

a time using only its neighbouring CBEDs, and then use the

retrieved exit wave to reconstruct the local phase image of the

material, employing the phase object approximation(POA).

This process can be run already during the experiment, and

the real-time reconstructed image therefore can help to val-

idate appropriate settings and conditions of the microscope,

which can reduce the chance of collecting unusable data, par-

ticularly at low-dose experiments. Furthermore, the method

does not require to handle the entire dataset in memory or

to perform repetitive read-write operations, making it com-

putationally efficient and omitting common hardware limita-

tions handling large datasets, while maintaining a high qual-

ity reconstruction, on par with other state of the art phase re-

construction algorithms, clearly outperforming conventional

integrated-intensity-based imaging modes at delivering intu-

itively interpretable images.



2. MACHINE LEARNING

Retrieving phase information from measured intensities is a

classical inverse problem. It was shown that deep learning

approaches can in principle be used to tackle these types of

problems [10, 11, 12] in electron and light microscopy. The

difficulty for 4D STEM arises from the fact that the data is

typically rather noisy, implying that the recorded intensity

does not directly correspond to the amplitude of the exit wave.

Hence, to retrieve the exit wave means not only to solve the

inverse problem to obtain the phase, but also to retrieve the

wave amplitude from sparse intensity patterns. Since both

amplitude and phase can generally be retrieved from the same

set of adjacent diffraction patterns, we propose a single deep

learning model to solve both problems simultaneously.

2.1. Training Data

We train our CNN with synthetic data, simulated using the

multislice algorithm and microscope modelling as imple-

mented in the MULTEM software [13]. This provides an

appropriate forward model to compute electron probes for

given microscope settings, its interaction with the electro-

static potential of atoms [14] and the resulting exit waves

and diffraction pattern intensities. For computational effi-

ciency we employed a relatively simplistic model, neglecting

the effects of spatial and temporal incoherence and inelastic

scattering. Each training sample consists of a 3x3 kernel

of adjacent diffraction patterns as feature and an exit wave

(amplitude-phase pair) as label in 128x128 pixels size as

shown in figure 1. The simulation parameters and micro-

scope settings are drawn at random from a uniform distri-

bution within the limits of practically meaningful ranges.

The atomic specimens for the simulations are generated from

randomly drawn crystallographic data files (≈ 126000) from

the Materials project [15]. The crystallographic orientation

parallel to the electron beam propagation is drawn from the

set of all low-index zone-axis orientations, while its rotation

around the beam vector is random. The specimen thickness

range is between 2 Å and 10 Å, strictly obeying the limits of

the POA. The effect of a finite electron dose is modelled from

the diffraction patterns assuming Poisson distributions of the

electron counts on the detector pixels. The dose is applied

as a factor scaling the simulated pattern and thus shifting

the expected values of the Poisson distributions accordingly.

This step is applied as a data augmentation step during the

training, resulting in a different dose and dose realisation for

each training sample in each epoch. The combination of an

appropriate forward model, a vast amount of structures, con-

tinuous microscope parameter ranges and an effective way of

data augmentation enables the creation of very large datasets

without redundancy and thus provides the means to train a

neural network to solve the given problem in a very general

manner at little risk of overfitting.

(a) Feature (b) Label

Fig. 1. Example of a feature-label set. (a) Feature: 3x3 ker-

nel of neighbouring diffraction patterns.(log-scale) (b) Label:

amplitude (top, log-scale) and phase (bottom) of the exit wave

2.2. NEURAL NETWORK IMPLEMENTATION

The network used is based on the U-NET architecture [1] with

some notable modifications as outlined in figure 2. The input

is a stack of nine diffraction patterns of size 128x128 pix-

els. CBED patterns naturally exhibit a large difference be-

tween the bright-field and the dark-field regions. To exploit

the valuable contribution of dark-field scattered electrons the

input tensors intensity range is compressed by raising it to the

power of 0.1, prior to standardising each input tensor by sub-

tracting its mean and dividing by its standard deviation. Due

to the small input size of the diffraction patterns in the spa-

tial dimensions, this implementation of the U-Net goes only

3 level deep (instead of 4) to arrive at a minimum map size

of 16x16 pixels. To avoid loss of information at the down-

sampling steps, convolutional layers with strides of two are

substituted for the pooling layers, thus making the CNN fully

convolutional. All convolutional layers use padding to main-

tain their map sizes.
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Fig. 2. Network architecture

Furthermore, leaky rectified linear units are used as ac-

tivation functions, introducing a small slope on the negative

part of the classical ReLU function. The output has three

layers: the retrieved exit-wave amplitude and two layers

representing the sine- and cosine components of the wave

phase. The phase decomposition at the output avoids the

necessity to estimate unnatural edges in the phase at the tran-



sitions between π and −π as shown in figure 3a, which have

shown to hamper convergence and degrade reconstruction

results. The outputs of these two layers are constrained by

a scaled hyperbolic tangent function, forcing the output into

a range between ±π. Subsequently, their respective trigono-

metric functions are applied: f1(x) = sin (tanh (x) ∗ π)
and f2(x) = cos (tanh (x) ∗ π). The output for the phase

amplitude is simply linear. The Adam-optimizer is used to

minimise the sum of the pixel-wise L1-losses and patch-wise

structure dissimilarity-losses on the phase and amplitude

images. We further penalise the euclidean norm of the de-

composed phase tensor as it needs to be one for an accurate

recombination.

(a) wave phase φ (b) sin (φ) (c) cos (φ)

Fig. 3. Example of a phase decomposition.

3. PHASE OBJECT RECONSTRUCTION

In a microscope, electrons are emitted to interact with the

atoms that compose the sample and the electric field they es-

tablish. By neglecting excitation events that reduce the co-

herency of the beam, the effect of the interaction can be seen

as adding a phase shift to the coherent electron wave. Further-

more, if a thin sample is assumed so that the electron wave

propagation can be omitted, then the interaction between the

object and the electron can be described with the following

equation:

O(~r)ψin(~r) = ψout(~r). (1)

This is the phase object approximation, whereO(~r) describes

the projected electrostatic potential or phase distribution of

the object at each position ~r. ψin(~r) and ψout(~r) are the elec-

tron waves before and after the interaction with the object, re-

spectively. From this equation we can see that if both ψin(~r)
and ψout(~r) are perfectly known, the object is easily resolved.

However, the fact is that neither of both can be directly mea-

sured in the microscope. One can make an assumption for the

incident beam ψin(~r) based on its projection to the reciprocal

space ψin(~k), since the latter is measurable and related to the

former through Fourier transformation. Although the phase

of the electron wave is lost when the intensity is recorded, we

can assume a homogeneous phase distribution inside of the

beam if the microscope is equipped with a probe corrector.

The retrieval for the outgoing beam is much more compli-

cated. After the scattering process both, phase and amplitude

of its far field wave form ψout(~k) do not have a regulated

form anymore and thus a proper retrieval for both of them is

needed. There are multiple approaches to solve the phase, or

even amplitude, retrieval problem. A list of methods that are

categorised as ptychography [16, 17, 18] are among the most

popular methods in electron microscopy. One of the most im-

portant criteria for ptychography reconstruction is the level of

overlap between beam positions, connecting the partially re-

trieved object at one scan position with neighbouring CBEDs,

and therefore the iterative process can eventually converge

since the retrieved result from all scan positions agree with

each other at their overlaps. In this sense, we design our neu-

ral network to predict the phase and the amplitude of the exit

wave at each scan position based on the corresponding CBED

and the CBEDs around it. Once the outgoing waveform for

one CBED at the detector plane ψout(~k) is retrieved, Fourier

transformation is performed to acquire its counterpart at the

object plane ψout(~r). According to equation (1), the outgoing

electron wave should contain a full description of the phase

object. However, considering that detector regions deliver-

ing a weak signal bear very little information, the retrieved

wave phase is weighted by the amplitude of the electron wave,

which represents the confidence that the predicted phase val-

ues in reciprocal space are indeed reliable. This results in a

weighted patch of the phase object at every scan point. By

summing them together the phase image of the scan area can

be reconstructed.

4. RESULTS

To test the performance of the neural network, we simulated

4D STEM datasets for reconstruction. The material of use is

twisted bi-layer graphene, in which we deliberately created

a vacancy, and also substituted one of the carbon atoms by

a silicon atom. The simulation is performed under a conver-

gent beam condition, with the convergence angle of 25 mrad,

beam energy of 200 kV, and scanning step size of 0.2 Å. Pois-

son noise is added to the datasets to model the effect of a fi-

nite electron dose. The reconstruction is performed with the

proposed method and the single side band ptychography re-

construction algorithm [8] (SSB), and is compared with con-

ventional ADF imaging. The results in figure 4 show that the

CNN reconstruction performs very well even in the presence

of defects. Both the substitutional atom and vacancy can be

clearly identified in the mid to high dose reconstructed im-

age. The CNN reconstruction also shows a superior ability to

retrieve a signal from low-dose data, as can be observed visu-

ally but is also indicated by the normalised cross-correlation

values at 2.5× 102 e/Å
2

in figure 4.

We further tested the network with a real graphene dataset

(Fig. 5a) using a convergence angle of 34 mrad, acceleration

voltage of 60 keV, and scanning step size of 0.04 Å, and also

a SrTiO3 dataset (Fig. 5b) with 20 mrad convergence angle,

200 keV, and 0.191 Å step size as shown in figure 5. Strictly



xc=0.91 xc=0.76 xc=0.77 xc=0.67

xc=0.86 xc=0.75 xc=0.46 xc=0.17

xc=0.93 xc=0.91 xc=0.79 xc=0.41

Fig. 4. Left: Comparison of

ADF imaging, SSB and the

presented CNN reconstruction

method for 4 dose settings.

The images were retrieved

from a simulated twisted bi-

layer graphene dataset con-

taining a vacancy and a Si

substitution atom. Normalised

cross-correlation values xc are

given w.r.t. the transmission

function (top).

speaking, the latter is not a phase object due to its thickness,

which leads to artefacts since the reconstruction should be

done in a more complex manner. However, our result also

shows that by rescaling the intensity of the dataset, it is still

possible to generate a clear image that not only shows the po-

sitions of the atoms but also relative differences in the phase.

However, the phase difference between the atoms and spac-

ing does not match with the simulated transmission function

of the specimen and therefore the reconstructed result is not

yet suitable for further quantitative analysis.

(a) Graphene (b) SrT iO3

Fig. 5. Reconstructions from experimental datasets.

5. SUMMARY

In this paper we demonstrate an imaging mode based on a

two-step phase object reconstruction using deep learning to

first address the phase- and amplitude retrieval problem for

CBED patterns and secondly, reconstruct the phase object

from the retrieved exit waves. The approach was validated on

simulated, as well as real data, yielding comparable perfor-

mance to state of the art conventional phase retrieval meth-

ods in terms of spatial resolution and sensitivity to differ-

ent atomic species, particularly in the low-dose range for 2-

dimensional and thin specimen. A notable advantage of the

method is that instead of going through iterative searching

processes or post-processing sessions that can only be carried

out after the whole dataset is acquired, our CNN can quickly

predict phase and amplitude, and thus opens the possibility

to perform reconstruction while collecting data nearly in real

time at a quality
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beeck, Josef Zweck, Peter Schattschneider, and Andreas

Rosenauer, “Atomic electric fields revealed by a quan-

tum mechanical approach to electron picodiffraction,”

Nature communications, vol. 5, no. 1, pp. 1–8, 2014.
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