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Recent discovery of axion states in materials such as antiferromagnetic topological insulators
boosted investigations of magnetoelectric response in topological insulators and their promise to-
wards dissipationless topological electronics. In this paper, we develop a tight-binding methodology
to explore the emergence of axion states in Bi2Se3 in proximity to magnetic insulators on top and
bottom surfaces. The topological protection of the surface states is lifted by a time-reversal-breaking
perturbation due to proximity of a magnetic insulator and a gap is opened on the surfaces, giving
rise to half-quantized Hall conductance and zero Hall plateau - evidencing an axion insulator state.
We developed a real-space tight-binding Hamiltonian for Bi2Se3 using first-principles data. Trans-
port properties of the system were obtained within the Landauer-Büttiker formalism, and discuss
the creation of axion states through Hall conductance and zero Hall plateau at the surfaces, as a
function of proximitized magnetization and corresponding potentials at the surfaces, as well as the
thickness of the topological insulator.

I. INTRODUCTION

Axions are hypothetical particles introduced 40 years
ago in quantum field theory, to solve the strong charge-
parity problem in high-energy physics. However, they
remained evasive to any observation in nature to date1.
Many particles discovered or hypothesized in particle
physics to resolve a certain contradiction are found by
analogy as quasi-particle excitations in condensed mat-
ter physics, such as massless Weyl, Dirac fermions, and
Majorana fermions, to name a few2. Axions were not an
exception - weakly interacting quasiparticles in materials
such as antiferromagnetic topological insulators (AFM
TIs) were shown to exhibit governing dynamics that is
similar to axion particles in high-energy physics3,4. Fur-
thermore, the θ term in the topological magnetoelectric
effect (TME) was shown to have the same form as the
action describing the coupling between an axion parti-
cle and a photon5. The appearance of axion states in
condensed matter systems is accompanied by several in-
teresting phenomena such as the half-quantized anoma-
lous Hall effect (QAHE) and the linear magnetoelectric
response1.

Subsequent studies in particle physics and astrophysics
indicated that axions are candidate for dark matter.
Identification of such dark axions is a challenging task
due to their weak interaction with ordinary materials.
Recently, it was proposed that topological insulators with
a dynamical axion field can be utilized to detect dark
axions, with theoretical prediction of the mass of these
particles of 0.7-3.5 meV6.

Therefore, condensed matter systems based on topo-
logical insulators that can host axion quasi-particles -
dubbed axion insulators (AI) - are of prime scientific in-
terest. Several works on axion states in magnetic topo-
logical insulator MnBi2Te4 have readily been reported in
the literature7–10. They develop an effective continuum

Hamiltonian close to the Γ point and then approximate
the original tight-binding Hamiltonian for low energies
before discretizing the continuum Hamiltonian on a cu-
bic lattice. In doing so, they do not address effects re-
lated to the symmetry of the structure as well as higher
energy outcomes. However, their performance can likely
be exceeded by a suitable design of ferromagnet-TI het-
erostructures. There magnetization and surface states
can be tailored individually as they belong to different
constituent materials, to achieve controllable and stable
performance even at room temperature. This is the main
objective of our theoretical investigation in the present
manuscript. The axion insulators are characterized by a
half-quantized Hall conductance with opposite sign and
chiral currents on the surfaces, the latter being clockwise
and counterclockwise on opposite surfaces. The electro-
magnetic response of a three-dimensional insulator can
be expressed by Maxwell’s action11,12:

S =
8

π

∫
d3x dt (εE2 − 1

µ
B2), (1)

in which E and B are electric and magnetic field inside
the insulator, and ε and µ represent dielectric constant
and magnetic permeability, respectively. For insulators
with broken time-reversal symmetry (TRS), spatial sym-
metry or a combination of spatial symmetry and TRS can
lead to quantized θ. The axion term should be added to
the action as:

Sθ =
θ

2π

α

2π

∫
d3x dtE ·B, (2)

in which θ acts as an axion field. Here α = e2/ℏc is
the fine structure constant. As E ·B is odd under TRS,
Sθ must be invariant when θ → −θ. The axion field (θ)
for time-reversal invariant insulators is quantized to 0 for
normal insulators or π for strongly topological ones1,13.
A schematic classification of TIs is depicted in Fig. 1 in
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FIG. 1. Schematic classification of 3D insulators based on
(broken) TRS and the axion term θ5.

terms of the existence or breaking of TRS. In the pres-
ence of TRS, θ = 0 or π correspond to normal insulators
or TIs, respectively. For broken TRS, TI can be an axion
insulator (AI) or a magnetic insulator. In AI, although
TRS is broken, a combination of TRS and lattice trans-
lation symmetry is conserved, which is known as effec-
tive TRS and θ = π. Magnetic insulators can have any
arbitrary value of θ proportional to the magnetic order
parameter M , i.e. θ(r, t) ∝ δM(r, t)5. The axion term
states that an electric field induces magnetic polarization
and a magnetic field induces electric polarization. θ de-
pends on the band structure of the insulator and can be
expressed as follows13:

θ =
1

4π

∫
d3k ϵijk Tr[Ai ∂j Ak + i

2

3
AiAjAk],

with Aj = −i ⟨un|
∂

∂kj
|um⟩

(3)

The topological magnetoelectric effect can be defined as
a linear magnetoelectric polarization13:

αij =
∂Mj

∂Ei
|B=0 =

∂Pi

∂Bj
|E=0 = α̃ij + θ

α

4π2
δij , (4)

where the tensor α̃ij contains nine independent compo-
nents for different contribution of spin, orbitals, and ions;
for materials with inversion and time-reversal symmetry
α̃ij = 0. Here we focus on magnetoelectric coupling re-
sulting from the orbital magnetization and polarization.
Axion insulator results in a TME in which an energy gap
opens on the surfaces and the bulk quantization such that
θ = π.

A gap is opened on the surfaces when surface states are
broken by a time-reversal-breaking perturbation through
an external magnetic field, or if TI is placed in proxim-
ity to a magnetic insulator, or in presence of magnetic
impurities on the 3D TI surfaces. In such cases, the sur-
face Hall conductivity becomes σxy = ± e2

2h , where sign
depends on the specific time-reversal breaking perturba-
tion14,15. If the direction of magnetization of the ferro-
magnetic (FM) materials which is in proximity to the
TI is the same, the quantum Hall conductance is half-

quantized and σxy = + e2

2h for the top and bottom sur-
faces; therefore a chiral current emerges at the TI sur-
faces. For different directions of magnetization on the
top and bottom surfaces, σxy = ± e2

2h changes sign at
surfaces, with no Hall current 16,17.

Some applications of axion insulators include antifer-
romagnetic topological insulators and their axion polari-
tons to detect dark matter, fabrication of non-reciprocal
thermal emitters by Weyl semimetals, and detection of
Majorana fermions in quantum anomalous Hall materi-
als for topological quantum computing1. Faster advances
in this field require the development of an efficient and
convenient theoretical methodology to design and char-
acterize the axion states in hybrid TI heterostructures,
as well as detecting and examining these states at vari-
ous energy scales. The latter is the ultimate objective of
our present manuscript, as exemplified through full char-
acterization of axion insulator states in a ferromagnet-
Bi2Se3-ferromagnet heterostructure after developing the
tight-binding Hamiltonian for Bi2Se3 with proximity ef-
fect included using the Zeeman term. We are deal-
ing with a three-dimensional system, where developing
a tight-binding model is challenging. We started from
the microscopic scale and used the DFT data to fit a
real-space Hamiltonian with the obtained band structure.
Although this model is an effective one, it is well-suited
to capture experimental results such as the hybridization
gap.

The paper is organized as follows. In Sec. II, we em-
ploy the symmetries to present the real-space Hamilto-
nian based on the parameters of the four-band Hamilto-
nian for Bi2Se3. In Sec. III, the effects of finite thickness
and the hybridization gap are considered. The hybridiza-
tion effect is calculated and the proximity effect on the
surface states is detailed. In Sec. IV, we develop the
transport methodology and exemplify its use to charac-
terize axion states in a Bi2Se3 proximitized to magnetic
insulators, by calculating the longitudinal, transverse and
Hall conductance as well as the axion term θ. Sec. V
summarizes our results and presents our conclusions.

II. THE MODEL HAMILTONIAN

The Bi2Se3 family of materials possess a rhombohedral
crystal structure with the symmetry group D5

3d(R3m)18,
as shown in Fig. 2. In the layered structure of Bi2Se3,
atoms in layers are stacked along the z-direction in the
ABCABC sequence, with 5 layers in the unit cell; those
five atomic layers are therefore usually referred to as a
Quintuple Layer (QL)19–21. Each lattice site has 6 near-
est neighbors in each layer and 6 next-nearest neighbors
in adjacent layers. The vectors ai to connect sites within
each layer and vectors bi to connect sites to adjacent
layers can be written as19:
a1 = (a, 0, 0), a2 = (−a/2, a

√
3/2, 0), a3 =

(−a/2,−a
√
3/2, 0), b1 = (0,

√
3a/3, c), b2 =

(−a/2,−
√
3a/6, c), and b3 = (a/2,

√
3a/2, c). The ruling
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FIG. 2. (a) Bi2Se3 crystal structure. (b) Top view of atomic
sites. (c) The atoms are stacked in layers in the z-direction
in the ABCABC sequence.

T P Γ(1) Γ(2) Γ(3)

Dim=1 Dim=2 Dim=3
+ + {k2

z} {ikzk+,−ikzk−}
{k⊥} {k2

−, k
2
+}

Γ5

TABLE I. Polynomials of k and the Γ matrices under the
transformations of the group D3, inversion and time reversal
symmetry. Γ5 = σ0 ⊗ τ3 and Γ(1), Γ(2), Γ(3) are irreducible
representations of group D3. k polynomials can only exist in
Hamiltonian according to the irreducible representations of
group D3, as given in the table.

structural symmetries are as follows 18,19,21:

• Three rotational symmetry around the z-axis:
R3 = exp[((iσ3 ⊗ 1)/2)θ], θ = 2π/3.

• Two rotational symmetry around the x-axis:
R2 = [(iσ2 ⊗ τ3)].

• Inversion symmetry: P = 1⊗ τ3.

• Time-reversal symmetry: T = (iσ2⊗1)K, where
K is a complex-conjugate operator, σ and τ are
spin and pseudospin Pauli matrices.

D3d is the direct multiplication of the D3 group and the
inverse operator group. Therefore, group D3 with spatial
inversion and time-reversal eigenvalues is considered18.

Table I represents polynomials of k and the Γ matrices
under the transformations of the group D3, inversion and
time reversal. By considering the irreducible representa-
tion, a four-band Hamiltonian was written as follows21:

H = ε′k ⊗ I +

 M ′
k A′

1kz 0 A′
2k−

A′
1kz −M ′

k A′
2k− 0

0 A′
2k+ M ′

k −A′
1kz

A′
2k+ 0 −A′

1kz −M ′
k

 , (5)

2.0

3.0

E 
(e

V
)

!" "GZG

FIG. 3. Band structure of Bi2Se3 near the Γ point. Dashed
lines represent DFT data and solid dots show the band struc-
ture from the four-band Hamiltonian with fitted parameters
near the Γ point.

where ε′k = C ′
0+C ′

1k
2
z +C ′

2k
2
⊥,M ′

k = M ′
0+M ′

1k
2
z +M ′

2k
2
⊥

and k2⊥ = k2x + k2y. By fitting the band structure ob-
tained from this Hamiltonian with the band structure
determined from DFT22, we obtain A′

0 = 5.35 eV Å,
B′

0 = 4.44 eV Å, C ′
0 = −0.0063 eV Å, C ′

1 = 6.65 eV Å2,
C ′

2 = −1.75 eV 2, M ′
0 = 0.29 eV Å, M ′

1 = −10.25 eV Å2,
M ′

2 = −56.6 eV Å2 which are similar to the values found
in the work of Liu et al.21.

In this section, a real-space tight-binding Hamiltonian
is constructed whose hopping parameters are related to
the parameters of effective four-band Hamiltonian near
the Γ point, introduced by Chu et al.23. It should also
be emphasized that, even though we are dealing with an
effective tight-binding model, other effects such as gate
voltage, electric field, magnetic field, and strain can be
straightforwardly added to the consideration based on
the symmetry group of the system. To construct a tight-
binding Hamiltonian, each unit cell was considered to
contain two atoms (Bi, Se) and spin; giving rise to four
states for each unit cell. We considered only the hopping
between nearest neighbors. Fig. 4 depicts the struc-
ture of Bi2Se3 in the x-y plane. Considering the near-
est neighbors only, each unit cell will have 6 neighboring
unit cells in the x-y plane that are connected by vec-
tors ni (i = 1, 2, 3) and two unit cells in the z direction
connected by vector n4. The real-space Hamiltonian is
written as follows:23,24

H = Σic
†
iEonci +Σi,α(c

†
iTαci+α +H.c), (6)

where α = n1,n2,n3,n4, and the operator c†i (ci) creates
(annihilates) an electron at site i. Further we have:

Eon = (E0 − 2ΣαBα)σz ⊗ σ0, (7)

and

Tα = Cασ0 ⊗ σ0 +Bασz ⊗ σ0 − i(
Aα

2
)σx ⊗ σ · nα. (8)
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FIG. 4. Lattice structure of Bi2Se3 in the x-y plane. Each
unit cell has 6 neighboring unit cells in the x-y plane that are
connected by vectors ni (i=1,2,3), and two unit cells in the z
direction that are connected by vector n4.

Hybridization gap (eV)
2 QLs 3 QLs 4 QLs 5 QLs

Our model 0.257 0.118 0.057 0.028
Ref. 26 0.252 0.138 0.070 0.041

TABLE II. Hybridization gap due to finite-size effect. First-
row are obtained from our model and the second-row are from
Ref. 26.

Eon and Tα are 4× 4 matrices corresponding to the hop-
ping parameters and stand for onsite energy and hop-
ping parameters between unit cells respectively. Based
on the structure of the system n1= (1/2,

√
3/2, 0), n2

= (−1/2,
√
3/2, 0), n3= (1, 0, 0), n4= (0, 0, 1). Because

of the symmetries of the system, An1,n2,n3
, Bn1,n2,n3

,
and Cn1,n2,n3

that are related to the x-y plane param-
eters are isotropic and therefore we use the notation
An1,n2,n3

= A2, Bn1,n2,n3
= B2, Cn1,n2,n3

= C2, while
for n4 parameters we take An4

= A1, Bn4
= B1, and

Cn4
= C1. By matching this Hamiltonian with the four-

band Hamiltonian near the Γ point, i.e for k → 0, the
parameters of the tight-binding Hamiltonian can be de-
termined.

III. FINITE SIZE AND PROXIMITY EFFECTS
ON SURFACE STATES

The Bi2Se3 surface Hamiltonian in the basis of top
and bottom states with spin ↑, ↓ {t ↑, t ↓, b ↑, b ↓} can be
written as follows 11,25:

Hsurf (kx, ky) = ℏvF (kyσx−kxσy)⊗σz+∆mσ0⊗σx, (9)

where vF is the Fermi velocity, ∆m = ∆h + Bk2 rep-
resents the coupling between the top and bottom states
and ∆h denotes the coupling gap at the surfaces26,27.
In the three-dimensional topological insulators family of
Bi2Se3, the bulk samples have a gap, while the surface
states are gapless and contain a Dirac cone. When the
thickness of the sample is reduced to nanoscale, there
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FIG. 5. (a) Hybridization gap due to finite-size effect on sur-
face states, as a function of TI thickness (expressed as a num-
ber of quintuple layers (QLs)). (b) Penetration of surface
state wave function into the bulk, for a 10 QLs thick sample.

will be an overlap between the wave functions of the top
and bottom surface states, and the spin-polarized sur-
face states of one surface combine with the opposite spin
components on the other surface, resulting in a gap at the
Dirac point. Here, the penetration depth was determined
for surface states considering the eigenfunctions of sur-
face states. Then, the hybridization gap was calculated
for surface states in several layers along the z-direction.
The obtained hybridization gap due to the finite size ef-
fect is shown in Fig. 5 and Table II, and is consistent with
experimental results26 and DFT data11. One concludes
that to prevent surface hybridization, the thickness of
the sample should be at least 6 QLs. As mentioned
earlier, to investigate the effect of magnetization on the
surface states, instead of using a two-dimensional effec-
tive surface Hamiltonian, a three-dimensional effective
Hamiltonian was employed in real space. Concerning a
2D model, the proximitized magnetization (weak Zeeman
field) leads to gaps in the Dirac cones on the surfaces. For
a 3D model, however, the application of magnetization
results in the formation of a gap in the Dirac cones on
the top and bottom surfaces, while the side surfaces re-
main gapless23. Fig. 6 illustrates the band structure and
gapless single Dirac cone of the surface states at the Γ
point. Applying Zeeman splitting term introduces a gap.

Magnetization effect on the top and bottom surfaces
can be achieved in two different ways: (i) by doping
with magnetic atoms (inclusions) on the top and bot-
tom surfaces, or (ii) by proximitized magnetic material
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FIG. 6. (a) The band structure and the gapless Dirac cone
of the surface states at the Γ point. (b) Applying Zeeman
splitting term causes a gap to open; here ∆t = 0.1 eV and
∆b = −0.2 eV.
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FIG. 7. Effect of magnetization and of structural inversion
asymmetry on surface states for different Vsia, ∆t, and ∆b

(in eV).

near those surfaces. Magnetic materials to impose mag-
netization on the surface states of the TI must be able to
establish strong magnetic coupling at the interface while
causing no effect on states near the Fermi energy28. Mag-
netization can be added to the Hamiltonian by the Zee-
man term:

HZeeman = ∆t/bσ0 ⊗ σz, (10)

where ∆t and ∆b are the exchange fields and represent
the gaps opening due to the magnetization applied to
the topological surface states in the top and bottom sur-
faces, respectively14,29. For different magnitudes of the
magnetizations on the top and bottom surfaces, the Zee-
man term and the gap on the top and bottom surfaces
will also be different. Thus, a term related to structural
inversion asymmetry (SIA) should be added11,25. This
term is a potential difference between two surfaces (Vsia)
and splits each spin-degenerate band into two subbands.
Fig. 7 presents the effect of magnetization and structural

Substrate

FM	Insulator	2

Topological	Insulator

FM	Insulator	1

FM2

Bi2Se3

FM1 
Vsia

FIG. 8. FM-Bi2Se3-FM heterostructure with opposite polar-
ity of magnetization at the two surfaces of the TI. In such a
case, the half-quantized Hall conductance will have different
sign at the surfaces and the net Hall conductance becomes
zero32. Theoretical consideration of the finite thickness of the
TI requires additional potential (Vsia) to capture the physics
due to the structural inversion asymmetry.

inversion asymmetry on TI surface states with a single
Dirac cone. Magnetization opens a gap in the Dirac point
while Vsia tunes the dispersion bands in different direc-
tions. The following term should be added to the Hamil-
tonian as:

Hsia = Vsiaσ0 ⊗ σz, (11)

IV. AXION INSULATOR STATES IN
FM-BI2SE3-FM HETEROSTRUCTURE

In what follows, the FM-TI-FM heterostructure shown
in Fig. 8 is used to study the emergent axion states and
the topological magnetoelectric effect. The essential con-
dition for the topological magnetoelectric effect is lost in
the presence of hybridization between the top and bot-
tom surface states. Therefore, the topological insulator
should be sufficiently thick to guarantee the absence of
hybridization between the top and bottom states30. As
discussed in previous section, in case of Bi2Se3 the min-
imum number of quintuple layers to consider is 7. In
addition, the exchange fields due to the magnetization
applied to the topological insulator at the top and bottom
surfaces should have opposite sign (i.e. ∆t∆b < 0)11,31.

One of the challenges in the fabrication of heterostruc-
tures to observe axion states is the proper choice of mate-
rials that will be used in proximity of 3D TIs. In addition
to structural and magnetic stability, these heterostruc-
tures must exhibit robust spin-polarized bandgap in the
interface states. A sufficient selection of thin magnetic
insulators is nowadays experimentally accessible to sand-
wich a TI for the purpose of creation of axion states,
such as CrI3, Cr2Ge2Te6, MnBi2Se4, and MnBi2Te433,34.
For example, for opposite magnetization of the two mag-
netic layers in a CrI3-Bi2Se3-MnBi2Se4 heterostructure,
∆t = 3.2 meV, ∆b = −26.9 meV, and Vsia = 9.35 meV at
the Bi2Se3 surfaces11. Zero Hall plateau and θ = π are
then the main signatures of the axion state.

For characterization of transport/conductance, in this
section we consider a four-terminal sample as depicted
in Fig. 9. The longitudinal conductance (σxx) and Hall
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FIG. 9. Schematic illustration of the 3D device with 2D leads
to measure the longitudinal (σxx) and Hall conductance (σxy)
at the surface.

conductance (σxy) were calculated using the Landauer-
Büttiker formalism. This formalism treats conductance
in terms of the transmission coefficients of the device.
The transmission coefficient between leads i and j can
be determined in terms of Green’s functions as35:

Tij = tr[ΓiGijΓjG
†
ij ], (12)

where Γi describes the coupling of the device to the leads
and can be expressed in terms of a self-energy Σi as
Γi = i[Σi − Σ†

i ]. Here Σi can be considered as an effec-
tive Hamiltonian describing the lead-device interaction36.
The Hamiltonian of the complete system can be subdi-
vided as follows:

H = HD +
∑
i

(Hi
L + V i

LD + V i
DL), (13)

where HD denotes the device Hamiltonian, Hi
L is the

Hamiltonian for the i-th lead, while V i
LD and V i

DL de-
note left and right Hamiltonian between the i-th lead
and device, respectively. In this setup, four identical
semi-infinite leads are attached to the sample and the
longitudinal and Hall conductance are given by37:

σxx =
e2

2h
T13 , σxy =

e2

2h
(T14 − T12). (14)

A prerequisite for AI states is that the values of ∆t/b

at the surfaces have opposite sign. The localization of
the Hall conductance on the surfaces weakly depends on
the Zeeman terms as the magnitude of ∆t/b increases,
but we use 2D leads to calculate the Hall conductance,
thus the amount of this conductance does not vary38. As
explained previously, the Hall conductance is weakly de-
pendent on the Zeeman term chosen, thus we use ∆t = 5
meV and ∆b = −25 meV. Our calculated longitudinal
and Hall conductance are shown in Fig. 10 for the system
with ∆t = 5 meV and ∆b = −25 meV. A half-quantized
Hall conductance appears upon applying the magnetiza-
tion to the top and bottom surfaces of a TI due to the

FIG. 10. Hall transmission coefficient for top and bottom
surfaces separately and the total Hall conductance, for ∆t = 5
meV and ∆b = −25 meV.

configuration of the structure, and can be formulated as
11,25

σt/b
xy = sgn(∆t/b)

e2

2h
. (15)

It should be noted that calculating/measuring the half-
quantization for each surface independently is challeng-
ing. As a qualitative indication, Chen et al.7 recently
proposed a nonlocal surface transport device in which
the axion insulator can be distinguished from normal
insulators without a precise measurement of the half-
quantization. Instead, we calculate Hall conductance for
the top and bottom surfaces separately as a more definite
proof of the axion insulator states. Going beyond the
previous work7–10, our calculations are more challeng-
ing but the results are exceedingly more accurate. For
calculation of the quantum transport in this system we
employed an original tight-binding Hamiltonian obtained
from symmetry considerations and ab-initio calculations,
which was a nontrivial task as we had to construct the
Landauer-Büttiker formulation for the complex crystal
structure of this system.

When the magnetic materials adjacent to the TI are
different, a Vsia needs to be applied to the top and bot-
tom surfaces of the TI. As discussed also in Ref. 11, Vsia

causes a phase transition from the axion states insulator
to the metallic state as the bandgap closes with increasing
the value of Vsia. We name the minimum band gap that is
induced by the the Zeeman terms (min {∆t, ∆b}) as the
magnetization gap. Based on Fig. 11, when Vsia ranges
between 0 and |∆t−∆b|/2 (0-10 meV in the case consid-
ered in Fig. 11) the magnetization bandgap is 10 meV
and for Vsia values between ||∆t|−|∆b||/2, ||∆t|+ |∆b||/2
(10-15 meV), the bandgap linearly decreases. For Vsia

values above ||∆t|+ |∆b||/2 (15 meV), the bandgap tends
to zero, giving rise to a metallic state. One has axion
states as long as Vsia is between 0 and ||∆t| + |∆b||/2.
Vsia can only change the size of the magnetization gap,
but since we consider E inside the band gap to calcu-
late conductance, the Hall conductance is independent
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FIG. 11. Phase diagram as a function of Vsia. We took ∆t = 5
meV and ∆b = −25 meV, and found that Vsia between 0 and
15 meV yields axion insulators states, while for Vsia > 15 meV
one finds a metallic state (cf. Ref. 11).

of Vsia.

For the same direction of magnetization at the top and
the bottom surface we have σxy = (Ct+Cb)

e2

h = e2

h , and
if the magnetizations have opposite direction σxy = 0
39. The latter can characterize two different modes, i.e.
either the axion insulator state or the normal insulator
state24. To determine whether σxy = 0 corresponds to
the axion insulator or the normal insulator, the electri-
cal transport needs to be calculated independently on the
top and bottom surfaces using the Landauer-Büttiker for-
malism. For axion insulators, transport on the top and
bottom surfaces is opposite and leads to net zero trans-
port, while for normal insulators, transport is zero on
both surfaces.

As stated in the introduction, in magnetoelectric ma-
terials, application of an electric field E induces mag-
netization M and the application of a magnetic field B
induces polarization P. For 3D insulators, a classifica-
tion based on TRS and magnetoelectric coupling θ can
be introduced. When TRS is broken, the insulators are
further subdivided into two categories. If TRS is broken
but there is a symmetry as a sum of TRS and transla-
tional symmetry (dubbed effective TRS), one deals with
an axion insulator and in this case θ = π3,5. As shown in
Fig. 12, we calculated the axion term θ for the FM-TI-
FM heterostructure as a function of the TI thickness (in
units of quintuple layers). With increasing the number of
QLs, θ → π, indicating formation of an axion insulator for
Nz > 10 (for other parameters ∆t = 5 meV, ∆b = −25
meV, and Vsia = 0). A moderate electric field can be
considered as an on-site energy varying linearly from the
bottom to the top of the TI film, such that magnetization
becomes linearly dependent on the electric field and the
axion angle θ can be computed.

3 6 10 14 18 22
N

QL

0

π/5

π/2

4π/5

π

θ

FIG. 12. The axion term θ for different TI thickness (number
of QLs) in case of ∆t = 5 meV, ∆b = −25 meV, and Vsia = 0.
With increasing thickness, θ → π, characterizing formation of
an axion insulator state for thickness beyond 10 QLs.

V. CONCLUSIONS

In summary, we developed a real space tight-binding
Hamiltonian for Bi2Se3 taking into account the symme-
try of the system and fitting the parameters using the
band structure obtained from DFT. This derived tight-
binding model is the most important aspect of our study.
We show that it is readily well-suited to capture exper-
imental results such as the hybridization gap, but the
effects of gating, magnetic field, and strain can also be
relatively straightforwardly added to the consideration
in our model based on the symmetry group of the sys-
tem. Since this model is represented in real space, fur-
ther studies of the effects of doping and magnetic and
non-magnetic impurities are facilitated.

In this work, we went on to apply the developed model
to a TI sandwiched between magnetic insulators, where
the magnetic proximity effect was added through the Zee-
man term to create favorable conditions for the appear-
ance of the axion insulator states. In cases when different
magnetic materials are considered, that induce exchange
fields of opposite sign at their interfaces with the TI, a po-
tential difference due to structural inversion asymmetry
Vsia was taken into account between the top and bottom
surfaces of the TI. In doing so, we demonstrated that
a phase transition from the axion state to the metallic
state occurs with increasing Vsia. To further character-
ize the axion insulator state, a four-terminal structure
was considered to calculate longitudinal and Hall con-
ductance using the Landauer-Büttiker formalism. The
total Hall conductance of the axion insulator is expected
to be zero, however, the same is expected from a trivial
band insulator. Therefore, to distinguish between nor-
mal insulator and axion insulator we performed calcula-
tion of the Hall conductance for each surface separately,
to identify the axion state. Furthermore, by calculating
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the axion term θ for a heterostructure in which magne-
tization gap of opposite sign is induced at the top and
bottom surfaces of the TI, we showed that by increasing
thickness of the TI beyond a threshold of 11 quintuple
layers one reaches θ ≈ π - the characteristic feature of an
axion insulator. These findings validate the simulation
framework approach developed in this work, set the key
limits on the stability of the axion insulator state in FM-
TI-FM heterostructures, and open a platform for further
in silico tailoring of the magnetoelectric response in TI

heterostructures by design.
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