toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115423-115429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802810700002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:188660 Serial 7125  
Permanent link to this record
 

 
Author Mirzakhani, M.; da Costa, D.R.; Peeters, F.M. url  doi
openurl 
  Title Isolated and hybrid bilayer graphene quantum rings Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115430-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the continuum model, we investigate the electronic properties of two types of bilayer graphene (BLG) quantum ring (QR) geometries: (i) An isolated BLG QR and (ii) a monolayer graphene (MLG) with a QR put on top of an infinite graphene sheet (hybrid BLG QR). Solving the Dirac-Weyl equation in the presence of a perpendicular magnetic field and applying the infinite mass boundary condition at the ring boundaries, we obtain analytical results for the energy levels and corresponding wave spinors for both structures. In the case of isolated BLG QR, we observe a sizable and magnetically tunable band gap which agrees with the tight-binding transport simulations. Our analytical results also show the intervalley symmetry EeK (m) = ???EK??? h (m) between the electron (e) and the hole (h) states (m is the angular momentum quantum number) for the energy spectrum of the isolated BLG QR. The presence of interface boundary in a hybrid BLG QR modifies drastically the energy levels as compared with that of an isolated BLG QR. Its energy levels are tunable from MLG dot to isolated BLG QR and to MLG Landau energy levels as the magnetic field is varied. Our predictions can be verified experimentally using different techniques such as by magnetotransport measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000801209300006 Publication Date 2022-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:188703 Serial 7175  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Controlling the hybridization gap and transport in a thin-film topological insulator : effect of strain, and electric and magnetic field Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 3 Pages 035119-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a thin-film topological insulator (TI), the edge states on two surfaces may couple by quantum tunneling, opening a gap known as the hybridization gap. Controlling the hybridization gap and transport has a variety of potential uses in photodetection and energy-harvesting applications. In this paper, we report the effect of strain, and electric and magnetic field, on the hybridization gap and transport in a thin Bi2Se3 film, investigated within the tight-binding theoretical framework. We demonstrate that vertical compression decreases the hybridization gap, as does tensile in-plane strain. Applying an electric field breaks the inversion symmetry and leads to a Rashba-like spin splitting proportional to the electric field, hence closing and reopening the gap. The influence of a magnetic field on thin-film TI is also discussed, starting from the role of an out-of-plane magnetic field on quantum Hall states. We further demonstrate that the hybridization gap can be controlled by an in-plane magnetic field, and that by applying a sufficiently strong field a quantum phase transition from an insulator to a semimetal can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832277500001 Publication Date 2022-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:189515 Serial 7140  
Permanent link to this record
 

 
Author Moura, V.N.; Dantas, D.S.; Farias, G.A.; Chaves, A.; Milošević, M.V. url  doi
openurl 
  Title Latent superconductivity at parallel interfaces in a superlattice dominated by another collective quantum phase Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 1 Pages 014516-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically examine behavior of superconductivity at parallel interfaces separating the domains of another dominant collective excitation, such as charge density waves or spin density waves. Due to their competitive coupling in a two-component Ginzburg-Landau model, suppression of the dominant order parameter at the interfacial planes allows for nucleation of the (hidden) superconducting order parameter at those planes. In such a case, we demonstrate how the number of the parallel interfacial planes and the distance between them are linked to the number and the size of the emerging superconducting gaps in the system, as well as the versatility and temperature evolution of the possible superconducting phases. These findings bear relevance to a broad selection of known layered superconducting materials, as well as to further design of artificial (e.g., oxide) superlattices, where the interplay between competing order parameters paves the way towards otherwise unattainable superconducting states, some with enhanced superconducting critical temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834346000004 Publication Date 2022-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:189520 Serial 7179  
Permanent link to this record
 

 
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A. url  doi
openurl 
  Title Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 22 Pages 224409-224412  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000823038900004 Publication Date 2022-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:189671 Serial 7209  
Permanent link to this record
 

 
Author Nulens, L.; Dausy, H.; Wyszynski, M.J.; Raes, B.; Van Bael, M.J.; Milošević, M.V.; Van de Vondel, J. url  doi
openurl 
  Title Metastable states and hidden phase slips in nanobridge SQUIDs Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 13 Pages 134518-134519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current (so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic in nature, does not necessarily coincide with the current associated with the lowest energy state and critically depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover, we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904657300007 Publication Date 2022-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:193393 Serial 7321  
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Neilson, D.; Tempère, J.; Perali, A. url  doi
openurl 
  Title Josephson effect as a signature of electron-hole superfluidity in bilayers of van der Waals heterostructures Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 22 Pages L220503-6  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We investigate a Josephson junction in an electron-hole superfluid in a double-layer transition metal dichalco-genide heterostructure. The observation of a critical tunneling current is a clear signature of superfluidity. In addition, we find the BCS-BEC crossover physics in the narrow barrier region controls the critical current across the entire system. The corresponding critical velocity, which is measurable in this system, has a maximum when the excitations pass from bosonic to fermionic. Remarkably, this occurs for the density at the boundary of the BEC to BCS-BEC crossover regime determined from the condensate fraction. This provides, in a semiconductor system, an experimental way to determine the position of this boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903924400007 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:193402 Serial 7316  
Permanent link to this record
 

 
Author Mobaraki, A.; Sevik, C.; Yapicioglu, H.; Cakir, D.; Gulseren, O. doi  openurl
  Title Temperature-dependent phonon spectrum of transition metal dichalcogenides calculated from the spectral energy density: Lattice thermal conductivity as an application Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 3 Pages 035402  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Predicting the mechanical and thermal properties of quasi-two-dimensional (2D) transition metal dichalco-genides (TMDs) is an essential task necessary for their implementation in device applications. Although rigorous density-functional-theory-based calculations are able to predict mechanical and electronic properties, mostly they are limited to zero temperature. Classical molecular dynamics facilitates the investigation of temperature-dependent properties, but its performance highly depends on the potential used for defining interactions between the atoms. In this study, we calculated temperature-dependent phonon properties of single-layer TMDs, namely, MoS2, MoSe2, WS2, and WSe2, by utilizing Stillinger-Weber-type potentials with optimized sets of parameters with respect to the first-principles results. The phonon lifetimes and contribution of each phonon mode in thermal conductivities in these monolayer crystals are systematically investigated by means of the spectralenergy-density method based on molecular dynamics simulations. The obtained results from this approach are in good agreement with previously available results from the Green-Kubo method. Moreover, detailed analysis of lattice thermal conductivity, including temperature-dependent mode decomposition through the entire Brillouin zone, shed more light on the thermal properties of these 2D crystals. The LA and TA acoustic branches contribute most to the lattice thermal conductivity, while ZA mode contribution is less because of the quadratic dispersion around the Brillouin zone center, particularly in MoSe2 due to the phonon anharmonicity, evident from the redshift, especially in optical modes, by increasing temperature. For all the considered 2D crystals, the phonon lifetime values are compelled by transition metal atoms, whereas the group velocity spectrum is dictated by chalcogen atoms. Overall, the lattice thermal conductivity is linearly proportional with inverse temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473536400003 Publication Date 2019-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:193764 Serial 8645  
Permanent link to this record
 

 
Author Ozbal, G.; Senger, R.T.; Sevik, C.; Sevincli, H. doi  openurl
  Title Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal  
  Volume 100 Issue 8 Pages 085415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Combining first-principles calculations with Landauer-Mittiker formalism, ballistic thermoelectric transport properties of semiconducting two-dimensional transition metal dichalcogenides (TMDs) and oxides (TMOs) (namely MX2 with M = Cr, Mo, W, Ti, Zr, Hf; X = O, S, Se, Te) are investigated in their 2H and 1T phases. Having computed structural, as well as ballistic electronic and phononic transport properties for all structures, we report the thermoelectric properties of the semiconducting ones. We find that 2H phases of four of the studied structures have very promising thermoelectric properties, unlike their 1T phases. The maximum room temperature p-type thermoelectric figure of merit (ZT) of 1.57 is obtained for 2H-HfSe2, which can be as high as 3.30 at T = 800 K. Additionally, 2H-ZrSe2, 2H-ZrTe2, and 2H-HfS2 have considerable ZT values (both nand p-type), that are above 1 at room temperature. The 1T phases of Zr and Hf-based oxides possess relatively high power factors, however their high lattice thermal conductance values limit their ZT values to below 1 at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480389100007 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:193773 Serial 7549  
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C. url  doi
openurl 
  Title Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 19 Pages 195204-195210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000918954800001 Publication Date 2022-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:194384 Serial 7290  
Permanent link to this record
 

 
Author Lazarevic, N.; Baum, A.; Milosavljevic, A.; Peis, L.; Stumberger, R.; Bekaert, J.; Solajic, A.; Pesic, J.; Wang, A.; Scepanovic, M.; Abeykoon, A.M.M.; Milošević, M.V.; Petrovic, C.; Popovic, Z.V.; Hackl, R. url  doi
openurl 
  Title Evolution of lattice, spin, and charge properties across the phase diagram of Fe1-xSx Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 106 Issue 9 Pages 094510-94519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A Raman scattering study covering the entire substitution range of the FeSe1-xSx solid solution is presented. Data were taken as a function of sulfur concentration x for 0 <= x <= 1, of temperature and of scattering symmetry. All types of excitations including phonons, spins, and charges are analyzed in detail. It is observed that the energy and width of the iron-related B-1g phonon mode vary continuously across the entire range of sulfur substitution. The A(1g) chalcogenide mode disappears above x = 0.23 and reappears at a much higher energy for x = 0.69. In a similar way the spectral features appearing at finite doping in A(1g) symmetry vary discontinuously. The magnetic excitation centered at approximately 500 cm(-1) disappears above x = 0.23 where the A(1g) lattice excitations exhibit a discontinuous change in energy. The low-energy mode associated with fluctuations displays maximal intensity at the nematostructural transition and thus tracks the phase boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000917933500004 Publication Date 2022-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number (up) UA @ admin @ c:irua:194397 Serial 7304  
Permanent link to this record
 

 
Author Cadorim, L.R.; de Toledo, L.V.; Ortiz, W.A.; Berger, J.; Sardella, E. doi  openurl
  Title Closed vortex state in three-dimensional mesoscopic superconducting films under an applied transport current Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 107 Issue 9 Pages 094515-94518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using the full 3D generalized time-dependent Ginzbug-Landau equation, we study a long superconducting film of finite width and thickness under an applied transport current. We show that, for sufficiently large thickness, the vortices and the antivortices become curved before they annihilate each other. As they approach the center of the sample, their ends combine, producing a single closed vortex. We also determine the critical values of the thickness for which the closed vortex sets in for different values of the Ginzburg-Ladau parameter. Finally, we propose a model of how to detect a closed vortex experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000957055800002 Publication Date 2023-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:196079 Serial 7673  
Permanent link to this record
 

 
Author Linard, F.J.A.; Moura, V.N.; Covaci, L.; Milošević, M.V.; Chaves, A. url  doi
openurl 
  Title Wave-packet scattering at a normal-superconductor interface in two-dimensional materials : a generalized theoretical approach Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 16 Pages 165306-165309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A wave-packet time evolution method, based on the split-operator technique, is developed to investigate the scattering of quasiparticles at a normal-superconductor interface of arbitrary profile and shape. As a practical application, we consider a system where low-energy electrons can be described as Dirac particles, which is the case for most two-dimensional materials, such as graphene and transition-metal dichalcogenides. However, the method is easily adapted for other cases such as electrons in few-layer black phosphorus or any Schrodinger quasiparticles within the effective mass approximation in semiconductors. We employ the method to revisit Andreev reflection in mono-, bi-, and trilayer graphene, where specular-and retro-reflection cases are observed for electrons scattered by a steplike superconducting region. The effect of opening a zero-gap channel across the superconducting region on the electron and hole scattering is also addressed, as an example of the versatility of the technique proposed here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000974675700006 Publication Date 2023-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:196709 Serial 8954  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title High Chern number in strained thin films of dilute magnetic topological insulators Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195119-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The quantum anomalous Hall effect was first observed experimentally by doping the Bi2Se3 materials family with chromium, where 5% doping induces an exchange field of around 0.1 eV. In ultrathin films, a topological phase transition from a normal insulator to a Chern insulator can be induced with an exchange field proportional to the hybridization gap. Subsequent transitions to states with higher Chern numbers require an exchange field larger than the (bulk) band gap, but are prohibited in practice by the detrimental effects of higher doping levels. Here, we show that threshold doping for these phase transitions in thin films is controllable by strain. As a consequence, higher Chern states can be reached with experimentally feasible doping, sufficiently dilute for the topological insulator to remain structurally stable. Such a facilitated realization of higher Chern insulators opens prospects for multichannel quantum computing, higher-capacity circuit interconnects, and energy-efficient electronic devices at elevated temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000995111000003 Publication Date 2023-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:197295 Serial 8820  
Permanent link to this record
 

 
Author Ahmadkhani, S.; Alihosseini, M.; Ghasemi, S.; Ahmadabadi, I.; Hassani, N.; Peeters, F.M.; Neek-Amal, M. url  doi
openurl 
  Title Multiband flattening and linear Dirac band structure in graphene with impurities Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 7 Pages 075401-75408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Flat bands in the energy spectrum have attracted a lot of attention in recent years because of their unique properties and promising applications. Special arrangement of impurities on monolayer graphene are proposed to generate multiflat bands in the electronic band structure. In addition to the single midgap states in the spectrum of graphene with low hydrogen density, we found closely spaced bands around the Fermi level with increasing impurity density, which are similar to discrete lines in the spectrum of quantum dots, as well as the unusual Landau-level energy spectrum of graphene in the presence of a strong magnetic field. The presence of flat bands crucially depends on whether or not there are odd or even electrons of H(F) atoms bound to graphene. Interestingly, we found that a fully hydrogenated (fluoridated) of a hexagon of graphene sheet with six hydrogen (fluorine) atoms sitting on top and bottom in consecutive order exhibits Dirac cones in the electronic band structure with a 20% smaller Fermi velocity as compared to the pristine graphene. Functionalizing graphene introduces various C-C bond lengths resulting in nonuniform strains. Such a nonuniform strain may induce a giant pseudomagnetic field in the system, resulting in quantum Hall effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994364500006 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:197431 Serial 8822  
Permanent link to this record
 

 
Author Zuniga-Puelles, E.; Levytskyi, V.; Özden, A.; Guerel, T.; Bulut, N.; Himcinschi, C.; Sevik, C.; Kortus, J.; Gumeniuk, R. doi  openurl
  Title Thermoelectric properties and scattering mechanisms in natural PbS Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 107 Issue 19 Pages 195203-195215  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract X-ray diffraction and energy dispersive x-ray spectroscopic analyses showed a natural galena (PbS) crystal from Freiberg in Saxony (Germany) to be a single phase specimen [rock salt (NaCl) structure type, space group Fm3m, a = 5.932(1) angstrom] with stoichiometric composition and an enhanced dislocation density (8 approximate to 1011 cm-2). The latter parameter leads to an increase of the electrical resistivity in the high-temperature regime, as well as to the appearance of phonon resonance with a characteristic frequency coPR = 3.8(1) THz. Being in the same range (i.e., 3-5.5 THz) with the sulfur optical modes of highest group velocities, it results in a drastic reduction (by similar to 75%) of thermal conductivity (K) at lower temperatures (i.e., < 100 K), as well as in the appearance of a characteristic minimum in K at T approximate to 30 K. Furthermore, the studied galena is characterized by phonon-drag behavior and by temperature dependent switch of the charge carrier scattering mechanism regime (i.e., scattering on dislocations for T < 100 K, on acoustic phonons for 100 K < T < 170 K and on both acoustic and optical phonons for 170 K < T < 300 K). The combined theoretical calculation and optical spectroscopic study confirm this mineral to be a direct gap degenerate semiconductor. The possible origins of the second-order Raman spectrum are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009980400008 Publication Date 2023-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:197808 Serial 8943  
Permanent link to this record
 

 
Author Santos-Castro, G.; Pandey, T.; Bruno, C.H.V.; Santos Caetano, E.W.; Milošević, M.V.; Chaves, A.; Freire, V.N. url  doi
openurl 
  Title Silicon and germanium adamantane and diamantane monolayers as two-dimensional anisotropic direct-gap semiconductors Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 3 Pages 035302-35310  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Structural and electronic properties of silicon and germanium monolayers with two different diamondoid crystal structures are detailed ab initio. Our results show that, despite Si and Ge being well-known indirect gap semiconductors in their bulk form, their adamantane and diamantane monolayers can exhibit optically active direct gap in the visible frequency range, with highly anisotropic effective masses, depending on the monolayer crystal structure. Moreover, we reveal that gaps in these materials are highly tunable with applied strain. These stable monolayer forms of Si and Ge are therefore expected to help bridging the gap between the fast growing area of opto-electronics in two-dimensional materials and the established silicon-based technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001074455300012 Publication Date 2023-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:200348 Serial 9089  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Bekaert, J. pdf  doi
openurl 
  Title Phonon-mediated superconductivity in ternary silicides X₄ CoSi (X = Nb, Ta) Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 13 Pages 134504-134507  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The superconducting properties of two recently synthesized ternary silicides with unit formula X<sub>4</sub>CoSi (X = Nb, Ta) are investigated through ab initio calculations combined with Eliashberg theory. Interestingly, their crystal structure comprises interlocking honeycomb networks of Nb/Ta atoms. Nb<sub>4</sub>CoSi is found to harbor better conditions for phonon-mediated superconductivity, as it possesses a higher density of states at the Fermi level, fostering stronger electron-phonon coupling. The superconducting critical temperatures (T<sub>c</sub>) follow the same trend, with Nb<sub>4</sub>CoSi having a twice higher value than Ta<sub>4</sub>CoSi. Furthermore, the calculated T<sub>c</sub> values (5.9 K vs 3.1 K) agree excellently with the experimentally obtained ones, establishing superconductivity in this new materials class as mediated by the electron-phonon coupling. Furthermore, my calculations show that the superconducting properties of these compounds do not simply correlate with the parameters of their honeycomb networks, contrary to proposals raised in the literature. Rather, their complete fermiology and phonon spectrum should be taken into account in order to explain their respective superconducting properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140080300003 Publication Date 2023-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:201445 Serial 9071  
Permanent link to this record
 

 
Author Covaci, L.; Marsiglio, F. doi  openurl
  Title Proximity effect and Josephson current in clean strong/weak/strong superconducting trilayers Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 73 Issue 1 Pages 014503  
  Keywords A1 Journal article  
  Abstract Recent measurements of the Josephson critical current through LSCO/LCO/LSCO thin films showed an unusually large proximity effect. Using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian we describe the proximity effect in weak links between a superconductor with critical temperature T-c and one with critical temperature T-c('), where T-c > T-c('). The weak link (N-') is therefore a superconductor above its own critical temperature and the superconducting regions are considered to have either s-wave or d-wave symmetry. We note that the proximity effect is enhanced due to the presence of superconducting correlations in the weak link. The dc Josephson current is calculated, and we obtain a nonzero value for temperatures greater than T-c(') for sizes of the weak links that can be almost an order of magnitude greater than the conventional coherence length. Considering pockets of superconductivity in the N-' layer, we show that this can lead to an even larger effect on the Josephson critical current by effectively shortening the weak link.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000235009000103 Publication Date 2006-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number (up) UA @ lucian @ Serial 4427  
Permanent link to this record
 

 
Author Doğan, F.; Covaci, L.; Kim, W.; Marsiglio, F. doi  openurl
  Title Emerging nonequilibrium bound state in spin-current–local-spin scattering Type A1 Journal article
  Year 2009 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 80 Issue 10 Pages 104434  
  Keywords A1 Journal article  
  Abstract Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A consequence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering properties for this type of system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000270383100077 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number (up) UA @ lucian @ Serial 4436  
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F. doi  openurl
  Title Impurity scattering of wave packets on a lattice Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 74 Issue 20 Pages 205120  
  Keywords A1 Journal article  
  Abstract Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one-dimensional lattice and illustrate characteristics of quantum transport such as resonant transmission. In particular we examine the transport characteristics of a random trimer model. We demonstrate the real-time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin-chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000242409400030 Publication Date 2006-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number (up) UA @ lucian @ Serial 4428  
Permanent link to this record
 

 
Author Kim, W.; Covaci, L.; Marsiglio, F. doi  openurl
  Title Hidden symmetries of electronic transport in a disordered one-dimensional lattice Type A1 Journal article
  Year 2006 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 73 Issue 19 Pages 195109  
  Keywords A1 Journal article  
  Abstract Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of traversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000237950400042 Publication Date 2006-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number (up) UA @ lucian @ Serial 4429  
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H. doi  openurl
  Title Electronic structure of a Si \delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier Type A1 Journal article
  Year 1996 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 54 Issue 11 Pages 7996-8004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract We present a theoretical study of the electronic structure of a heavily Si delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier. In this class of structures the effect of DX centers on the electronic properties can be tuned by changing the AlxGa1-xAs barrier width and/or the Al concentration, which leads to a lowering of the DX level with respect to the Fermi energy without disturbing the wave functions much. A self-consistent approach is developed in which the effective confinement potential and the Fermi energy of the system, the energies, the wave functions, and the electron densities of the discrete subbands have been obtained as a function of both the material parameters of the samples and the experimental conditions. The effect of DX centers on such structures at nonzero temperature and under an external pressure is investigated for three different models: (1) the DX(nc)(0) model with no correlation effects, (2) the d(+)/DX(0) model, and (3) the d(+)/DX(-) model with inclusion of correlation effects. In the actual calculation, influences of the background accepters, the discontinuity of the effective mass of the electrons at the interfaces of the different materials, band nonparabolicity, and the exchange-correlation energy of the electrons have been taken into account. We have found that (1) introducing a quantum barrier into delta-doped GaAs makes it possible to control the energy gaps between different electronic; subbands; (2) the electron wave functions are mon spread out when the repellent effect of the barriers is increased as compared to those in delta-doped GaAs; (3) increasing the quantum-barrier height and/or the application of hydrostatic pressure are helpful to experimentally observe the effect of the DX centers through a decrease of the total free-electron density; and (4) the correlation effects of the charged impurities are important for the systems under study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VL14500066 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 11 Open Access  
  Notes Approved no  
  Call Number (up) UA @ lucian @ c:irua:104388 Serial 1012  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Sardella, E.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in mesoscopic p-wave superconductors Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p-wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369217400004 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO). E.S. acknowledges support from the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP). ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:131581 Serial 4275  
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075111  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369401000001 Publication Date 2016-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:131614 Serial 4220  
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371405000005 Publication Date 2016-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:132345 Serial 4144  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Kang, J.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Moreschini, L.; Chang, Y.J.; Peeters, F.M.; Horn, K.; Rotenberg, E.; url  doi
openurl 
  Title New family of graphene-based organic semiconductors : an investigation of photon-induced electronic structure manipulation in half-fluorinated graphene Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 075439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of similar to 5 eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half-fluorinated carbon on Sic(0001), i.e., the (6 root 3 x 6 root 3) R30 degrees C/SiC “buffer layer,” graphene on this (6 root 3 x 6 root 3) R30 degrees C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (similar to 2.5-eV band gap) and metallic regions, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371398000007 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work in Erlangen was supported by the DFG through SPP 1459 “Graphene” and SFB 953 “Synthetic Carbon Allotropes” and by the ESF through the EURO-Graphene project GraphicRF. A.L.W. acknowledges support from the Max-Planck-Gesellschaft, the Donostia International Physics Centre, and the Centro de Fisica de Materiales in San Sebastian, Spain, and Brookhaven National Laboratory under US Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-SC0012704. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. Y.J.C. acknowledges support from the National Research Foundation of Korea under Grant No. NRF-2014R1A1A1002868. The authors gratefully acknowledge the work of T. Seyller's group at the Institut fur Physik, Technische Universitat Chemnitz, Germany for providing the samples. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:132352 Serial 4213  
Permanent link to this record
 

 
Author Chaves, A.; Mayers, M.Z.; Peeters, F.M.; Reichman, D.R. url  doi
openurl 
  Title Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Trions and biexcitons in anisotropic two-dimensional materials are investigated within an effective mass theory. Explicit results are obtained for phosphorene and arsenene, materials that share features such as a direct quasiparticle gap and anisotropic conduction and valence bands. Trions are predicted to have remarkably high binding energies and an elongated electron-hole structure with a preference for alignment along the armchair direction, where the effective masses are lower. We find that biexciton binding energies are also notably large, especially for monolayer phosphorene, where they are found to be twice as large as those for typical monolayer transition metal dichalcogenides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372715700001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes ; This work has been financially supported by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs, the FWO-CNPq bilateral program between Brazil and Flanders, and the Lemann Foundation. M.Z.M. is supported by a fellowship from the National Science Foundation, under Grant No. DGE-11-44155. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:133191 Serial 4262  
Permanent link to this record
 

 
Author Roy, P.; Torun, E.; de Groot, R.A. url  doi
openurl 
  Title Effect of doping and elastic properties in (Mn,Fe)2(Si,P) Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 094110  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Mixed magnetism (the coexistence of strong and weak magnetism in one material) is regarded as the origin of the giant magnetocaloric effect (GMCE). A good example is (Mn,Fe)(2)(Si,P), which is established as one of the best magnetocaloric materials available. Tuning the material properties are essential for optimizing its performance, and a straightforward way to do that is by doping. In this article, an ab initio electronic structure method was used to calculate the structure and magnetic properties of 3d-transition-metal-doped (Mn,Fe)(2)(Si,P) materials for magnetocaloric applications (transition metals are Cr, Co, Mn, Ni, Cu). For a steady performance, the material should be mechanically stable. A detailed analysis of the elastic constants shows that the mechanical stability of the (Mn,Fe)(2)(Si,P) system increases significantly by doping with boron without affecting the magnetic properties. Insights of the influence of doping enable future studies to understand and predict bettermagnetocaloric materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372712100001 Publication Date 2016-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work is part of an Industrial Partnership Programme (IPP I28) of Fundamenteel Onderzoek der Materie (FOM) (The Netherlands) and co-financed by BASF New Business. The authors would like to thank Phuong Thao Nguyen and Dr. Gilles A. de Wijs for very useful discussions. ; Approved Most recent IF: 3.836  
  Call Number (up) UA @ lucian @ c:irua:133192 Serial 4164  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: