toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Gauquelin, N.; van den Bos, K.H.W.; Béché, A.; Krause, F.F.; Lobato, I.; Lazar, S.; Rosenauer, A.; Van Aert, S.; Verbeeck, J. pdf  url
doi  openurl
  Title Determining oxygen relaxations at an interface: A comparative study between transmission electron microscopy techniques Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue 181 Pages 178-190  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nowadays, aberration corrected transmission electron microscopy (TEM) is a popular method to characterise nanomaterials at the atomic scale. Here, atomically resolved images of nanomaterials are acquired, where the contrast depends on the illumination, imaging and detector conditions of the microscope. Visualization of light elements is possible when using low angle annular dark field (LAADF) STEM, annular bright field (ABF) STEM, integrated differential phase contrast (iDPC) STEM, negative spherical aberration imaging (NCSI) and imaging STEM (ISTEM). In this work, images of a NdGaO3-La0.67Sr0.33MnO3 (NGO-LSMO) interface are quantitatively evaluated by using statistical parameter estimation theory. For imaging light elements, all techniques are providing reliable results, while the techniques based on interference contrast, NCSI and ISTEM, are less robust in terms of accuracy for extracting heavy column locations. In term of precision, sample drift and scan distortions mainly limits the STEM based techniques as compared to NCSI. Post processing techniques can, however, partially compensate for this. In order to provide an outlook to the future, simulated images of NGO, in which the unavoidable presence of Poisson noise is taken into account, are used to determine the ultimate precision. In this future counting noise limited scenario, NCSI and ISTEM imaging will provide more precise values as compared to the other techniques, which can be related to the mechanisms behind the image recording.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411170800022 Publication Date 2017-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from Flanders (FWO, Belgium) through project fundings (G.0044.13N, G.0374.13N, G.0368.15N, G.0369.15N), and by a Ph.D. grant to K.H.W.v.d.B. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. A.B. and N.G. acknowledge the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no.280432) which partly funded this study. N.G., A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The research leading to these results has received funding from the Deutsche Forschungsgemeinschaft under Contract No. RO 2057/4-2 and the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2. We thank Prof. G. Koster from the University of Twente for kindly providing us with the LSMO-NGO test sample. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:144435UA @ admin @ c:irua:144435 Serial 4620  
Permanent link to this record
 

 
Author (up) Gauquelin, N.; Zhang, H.; Zhu, G.; Wei, J.Y.T.; Botton, G.A. url  doi
openurl 
  Title Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
  Year 2018 Publication AIP advances Abbreviated Journal Aip Adv  
  Volume 8 Issue 5 Pages 055022  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-delta(YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity. (C) 2018 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Melville, NY Editor  
  Language Wos 000433954000022 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 1 Open Access OpenAccess  
  Notes ; We are thankful to Julia Huang for FIB TEM sample preparation. This work is supported by NSERC (through Discovery Grants to GAB and JYTW) and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by McMaster University, the Canada Foundation for Innovation and NSERC. N.G. acknowledges H. Idrissi for useful discussions. ; Approved Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:152063 Serial 5013  
Permanent link to this record
 

 
Author (up) Ghidelli, M.; Orekhov, A.; Bassi, A.L.; Terraneo, G.; Djemia, P.; Abadias, G.; Nord, M.; Béché, A.; Gauquelin, N.; Verbeeck, J.; Raskin, J.-p.; Schryvers, D.; Pardoen, T.; Idrissi, H. url  doi
openurl 
  Title Novel class of nanostructured metallic glass films with superior and tunable mechanical properties Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater  
  Volume Issue Pages 116955  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A novel class of nanostructured Zr50Cu50 (%at.) metallic glass films with superior and tunable mechanical

properties is produced by pulsed laser deposition. The process can be controlled to synthetize a wide

range of film microstructures including dense fully amorphous, amorphous embedded with nanocrystals

and amorphous nano-granular. A unique dense self-assembled nano-laminated atomic arrangement

characterized by alternating Cu-rich and Zr/O-rich nanolayers with different local chemical enrichment

and amorphous or amorphous-crystalline composite nanostructure has been discovered, while

significant in-plane clustering is reported for films synthetized at high deposition pressures. This unique

nanoarchitecture is at the basis of superior mechanical properties including large hardness and elastic

modulus up to 10 and 140 GPa, respectively and outstanding total elongation to failure (>9%), leading to

excellent strength/ductility balance, which can be tuned by playing with the film architecture. These

results pave the way to the synthesis of novel class of engineered nanostructured metallic glass films

with high structural performances attractive for a number of applications in microelectronics and

coating industry.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670077800004 Publication Date 2021-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 27 Open Access OpenAccess  
  Notes H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the Fonds de la Recherche Scientifique – FNRS under Grant T.0178.19 and Grant CDR– J011320F. We acknowledge funding for the direct electron detector used in the 4D stem studies from the Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government J.V acknowledges funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. A.O. has received partial funding from the GOA project “Solarpaint” of the University of Antwerp. A.B. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. M.G. and A.L.B acknowledge Chantelle Ekanem for support in PLD depositions. Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @c:irua:178142 Serial 6761  
Permanent link to this record
 

 
Author (up) Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C. pdf  url
doi  openurl
  Title Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing Type A1 Journal article
  Year 2018 Publication Micron Abbreviated Journal Micron  
  Volume 115 Issue Pages 25-31  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nd-YAG QS laser cleaning of soiled stone at 1064 nm can sometimes result in a more yellow appearance compared to other cleaning techniques. Especially in France, this yellowing effect is still considered as a major aesthetic issue by the architects and conservators. One explanation states that the yellowing is linked to the formation of iron-rich nanophase(s) through the laser beam interaction with black crusts that would re-deposit on the cleaned substrate after irradiation. To characterize these nanophases, a model crust containing hematite was elaborated and laser irradiated using a Nd-YAG QS laser. The color of the sample shifted instantaneously from red to a bright yellow and numerous particles were ablated in a visible smoke. Transmission electron microscopy (TEM) was used to examine the morphology and the crystallinity of the neo-formed compounds, both on the surface of the samples and in the ablated materials. In addition, an investigation of the chemical and structural properties of the nanophases was conducted by X-ray dispersive energy (EDX) and electron energy loss (EELS) spectroscopies. It was found that both the surface of the sample and the ablated materials are covered by crystallized nano-spheres and nano-residues, all containing iron and oxygen, sometimes along with calcium and sulfur. In particular an interfacial area containing the four elements was evidenced between some nanostructures and the substrate. Magnetite Fe3O4 was also identified at the nanoscale. This study demonstrates that the laser yellowing of a model crust is linked to the presence of iron-rich nanophases including CaxFeySzOδ nanostructures and magnetite Fe3O4 at the surface after irradiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449125600004 Publication Date 2018-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 9 Open Access Not_Open_Access: Available from 19.08.2020  
  Notes The authors wish to thank Valérie Lalanne for the sample preparation for TEM and Stijn Van den Broeck for the FIB cut elaboration. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). Approved Most recent IF: 1.98  
  Call Number EMAT @ emat @c:irua:154356UA @ admin @ c:irua:154356 Serial 5056  
Permanent link to this record
 

 
Author (up) Grieten, E.; Schalm, O.; Tack, P.; Bauters, S.; Storme, P.; Gauquelin, N.; Caen, J.; Patelli, A.; Vincze, L.; Schryvers, D. pdf  doi
openurl 
  Title Reclaiming the image of daguerreotypes: Characterization of the corroded surface before and after atmospheric plasma treatment Type A1 Journal article
  Year 2017 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit  
  Volume Issue Pages  
  Keywords A1 Journal article; Art; History; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Technological developments such as atmospheric plasma jets for industry can be adapted for the conservation of cultural heritage. This application might offer a potential method for the removal or transformation of the corrosion on historical photographs. We focus on daguerreotypes and present an in-depth study of the induced changes by a multi-analytical approach using optical microscopy, scanning electron microscopy, different types of transmission electron microscopy and X-ray absorption fine structure. The H2-He afterglow removes S from an Ag2S or Cu2S layer which results in a nano-layer of metallic Ag or Cu on top of the deteriorated microstructure. In case the corrosion layer is composed of Cu-Ag-S compounds, our proposed setup can be used to partially remove the corrosion. These alterations of the corrosion results in an improvement in the readability of the photographic image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414230700007 Publication Date 2017-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.838 Times cited 9 Open Access Not_Open_Access  
  Notes The authors thank Herman Maes for the daguerreotypes used in this study. The authors also acknowledge the opportunity to perform XAFS measurements at the DUBBLE beamline of the ESRF storage ring under the approval of the advisory Committee (beam time nr. 26-01-990) and acknowledge the DUBBLE beamline staff for their support. They are also grateful for the financial support by the EU-FP7 grant PANNA no. 282998 and the STIMPRO project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT). Approved Most recent IF: 1.838  
  Call Number EMAT @ emat @c:irua:144430 Serial 4625  
Permanent link to this record
 

 
Author (up) Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D. url  doi
openurl 
  Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
  Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 119 Issue 25 Pages 256403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000418619100014 Publication Date 2017-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 79 Open Access OpenAccess  
  Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:148510 Serial 4897  
Permanent link to this record
 

 
Author (up) Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D. pdf  url
doi  openurl
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research  
  Volume 2 Issue 2 Pages 023404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603642700008 Publication Date 2020-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 58 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:172462 Serial 6401  
Permanent link to this record
 

 
Author (up) Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
  Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 47 Issue 44 Pages 15783-15790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450208000019 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.029 Times cited Open Access Not_Open_Access  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029  
  Call Number EMAT @ emat @c:irua:155771 Serial 5137  
Permanent link to this record
 

 
Author (up) Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O3) improving the performance of lithium-ion batteries Type A1 Journal article
  Year 2021 Publication Energy technology Abbreviated Journal  
  Volume 9 Issue 4 Pages 2100028  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surface coating is a crucial method to mitigate the aging problem of high-Ni cathode active materials (CAMs). By avoiding the direct contact of the CAM and the electrolyte, side reactions are hindered. Commonly used techniques like wet or ALD coating are time consuming and costly. Therefore, a more cost-effective coating technique is desirable. Herein, a facile and fast dry powder coating process for CAMs with nanostructured fumed metal oxides are reported. As the model case, the coating of high-Ni NMC (LiNi0.7Mn0.15Co0.15O2) by nanostructured fumed Al2O3 is investigated. A high coverage of the CAM surface with an almost continuous coating layer is achieved, still showing some porosity. Electrochemical evaluation shows a significant increase in capacity retention, cycle life and rate performance of the coated NMC material. The coating layer protects the surface of the CAM successfully and prevents side reactions, resulting in reduced solid electrolyte interface (SEI) formation and charge transfer impedance during cycling. A mechanism on how the coating layer enhances the cycling performance is hypothesized. The stable coating layer effectively prevents crack formation and particle disintegration of the NMC. In depth analysis indicates partial formation of LixAl2O3/LiAlO2 in the coating layer during cycling, enhancing lithium ion diffusivity and thus, also the rate performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621000700001 Publication Date 2021-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2194-4296; 2194-4288 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access OpenAccess  
  Notes The authors would like to thank Erik Peldszus and Steve Rienecker for the support with scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Funding from the Flemish Research Fund (FWO) project G0F1320N is acknowledged.; Open access funding enabled and organized by Projekt DEAL. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176670 Serial 6724  
Permanent link to this record
 

 
Author (up) Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author (up) Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P. url  doi
openurl 
  Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
  Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 239 Issue Pages 118247-118249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861076600004 Publication Date 2022-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited 5 Open Access OpenAccess  
  Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:191432 Serial 7186  
Permanent link to this record
 

 
Author (up) Jany, B.R.; Gauquelin, N.; Willhammar, T.; Nikiel, M.; van den Bos, K.H.W.; Janas, A.; Szajna, K.; Verbeeck, J.; Van Aert, S.; Van Tendeloo, G.; Krok, F. url  doi
openurl 
  Title Controlled growth of hexagonal gold nanostructures during thermally induced self-assembling on Ge(001) surface Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 42420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-sized gold has become an important material in various fields of science and technology, where control over the size and crystallography is desired to tailor the functionality. Gold crystallizes in the face-centered cubic (fcc) phase, and its hexagonal closed packed (hcp) structure is a very unusual and rare phase. Stable Au hcp phase has been reported to form in nanoparticles at the tips of some Ge nanowires. It has also recently been synthesized in the form of thin graphene-supported sheets which are unstable under electron beam irradiation. Here, we show that stable hcp Au 3D nanostructures with well-defined crystallographic orientation and size can be systematically created in a process of thermally induced self-assembly of thin Au layer on Ge(001) monocrystal. The Au hcp crystallite is present in each Au nanostructure and has been characterized by different electron microscopy techniques. We report that a careful heat treatment above the eutectic melting temperature and a controlled cooling is required to form the hcp phase of Au on a Ge single crystal. This new method gives scientific prospects to obtain stable Au hcp phase for future applications in a rather simple manner as well as redefine the phase diagram of Gold with Germanium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393940700001 Publication Date 2017-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 25 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the financial support from the Polish National Science Center, grant no. DEC-2012/07/B/ST5/00906. N.G., G.V.T. and J.V. acknowledge the European Union (EU) Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX for support. The Research Foundation Flanders is acknowledged through project fundings (G.0374.13N, G.0368.15N, G.0369.15N) and for a Ph.D. research grant to K.H.W.v.d.B. The microscope was partly funded by the Hercules Fund from the Flemish Government. T.W. acknowledges the Swedish Research Council for an international postdoc grant. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483–ESTEEM2 (Integrated Infrastructure Initiative–I3). Part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @ c:irua:140846UA @ admin @ c:irua:140846 Serial 4423  
Permanent link to this record
 

 
Author (up) Jimenez-Mena, N.; Jacques, P.J.; Ding, L.; Gauquelin, N.; Schryvers, D.; Idrissi, H.; Delannay, F.; Simar, A. pdf  url
doi  openurl
  Title Enhancement of toughness of Al-to-steel Friction Melt Bonded welds via metallic interlayers Type A1 Journal article
  Year 2019 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 740-741 Issue Pages 274-284  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The toughness of Al-to-steel welds decreases with increasing thickness of the intermetallic (IM) layer formed at the interface. Co plating has been added as interlayer in Al-to-steel Friction Melt Bonded (FMB) welds to control the nature and thickness of the IM layer. In comparison to a weld without interlayer, Co plating brings about a reduction of the thickness of the IM layer by 70%. The critical energy release rate of the crack propagating in the weld is used as an indicator of toughness. It is evaluated via an adapted crack propagation test using an energy conservation criterion. For a weld without interlayer, critical energy release rate is found to increase when the thickness of the intermetallic layer decreases. When the intermetallic layer is thick, the crack propagates in a brittle manner through the intermetallic whereas, at low layer thickness, the crack deviates and partially propagates through the Al plate, which causes an increase of toughness. The use of a Co interlayer brings about an increase of toughness by causing full deviation of the crack towards the Al plate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453494500029 Publication Date 2018-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 4 Open Access Not_Open_Access: Available from 25.10.2020  
  Notes The authors acknowledge the financial support of the Interuniversity Attraction Poles Program from the Belgian State through the Belgian Policy Agency, Belgium, contract IAP7/21 INTEMATE. N. Jimenez-Mena acknowledges the financial support of the (Fonds pour la formation à la recherchedans l'industrie et dans l'agriculture (FRIA), Belgium. A. Simar acknowledges the financial support of the (European Research Council – Starting Grant (ERC-StG), project ALUFIX, grant agreement no 716678. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS), Belgium. The authors also acknowledge M. Coulombier for the help provided in the measurement of the friction coefficient, and T. Pardoen and F. Lani for the fruitful discussions. Approved Most recent IF: 3.094  
  Call Number EMAT @ emat @c:irua:154866UA @ admin @ c:irua:154866 Serial 5061  
Permanent link to this record
 

 
Author (up) Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M. pdf  url
doi  openurl
  Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 52 Pages 31261-31270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566579400025 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 1 Open Access OpenAccess  
  Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number EMAT @ emat @c:irua:172059 Serial 6416  
Permanent link to this record
 

 
Author (up) Kante, M.V.; Weber, M.L.; Ni, S.; van den Bosch, I.C.G.; van der Minne, E.; Heymann, L.; Falling, L.J.; Gauquelin, N.; Tsvetanova, M.; Cunha, D.M.; Koster, G.; Gunkel, F.; Nemsak, S.; Hahn, H.; Estrada, L.V.; Baeumer, C. url  doi
openurl 
  Title A high-entropy oxide as high-activity electrocatalyst for water oxidation Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 6 Pages 5329-5339  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-delta with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono-or bimetallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953440900001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:196097 Serial 7390  
Permanent link to this record
 

 
Author (up) Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S.J.; Klose, F.; Jungbauer, M.; Moshnyaga, V. url  doi
openurl 
  Title High-TCInterfacial Ferromagnetism in SrMnO3/LaMnO3Superlattices Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv. Funct. Mater.  
  Volume Issue Pages 1808270  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures of strongly correlated oxides demonstrate various intriguing and potentially useful interfacial phenomena. LaMnO3/SrMnO3 superlattices are presented showcasing a new high‐temperature ferromagnetic phase with Curie temperature, TC ≈360 K, caused by electron transfer from the surface of the LaMnO3 donor layer into the neighboring SrMnO3 acceptor layer. As a result, the SrMnO3 (top)/LaMnO3 (bottom) interface shows an enhancement of the magnetization as depth‐profiled by polarized neutron reflectometry. The length scale of charge transfer, λTF ≈2 unit cells, is obtained from in situ growth monitoring by optical ellipsometry, supported by optical simulations, and further confirmed by high resolution electron microscopy and spectroscopy. A model of the inhomogeneous distribution of electron density in LaMnO3/SrMnO3 layers along the growth direction is concluded to account for a complex interplay between ferromagnetic and antiferromagnetic layers in superlattices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535358900008 Publication Date 2019-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.621 Times cited 26 Open Access  
  Notes The authors thank EU FP7 Framework (Project IFOX) and DFG (SFB 1073, TP B04, A02, Z02) for the financial support. J.V., K.M.C and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. The PNR experiment was funded by the Australian Nuclear Science and Technology Organization (proposal number P3985). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:162108 Serial 5294  
Permanent link to this record
 

 
Author (up) Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S. url  doi
openurl 
  Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages 235146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454160800004 Publication Date 2018-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:156784 Serial 5363  
Permanent link to this record
 

 
Author (up) Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J. url  doi
openurl 
  Title Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 7 Pages 075003-75010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834035300001 Publication Date 2022-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:189674 Serial 7094  
Permanent link to this record
 

 
Author (up) Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J. url  doi
openurl 
  Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 5 Pages 055001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588209300001 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access OpenAccess  
  Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:173679 Serial 6545  
Permanent link to this record
 

 
Author (up) Lebedev, N.; Stehno, M.; Rana, A.; Reith, P.; Gauquelin, N.; Verbeeck, J.; Hilgenkamp, H.; Brinkman, A.; Aarts, J. url  doi
openurl 
  Title Gate-tuned anomalous Hall effect driven by Rashba splitting in intermixed LaAlO3/GdTiO3/SrTiO3 Type A1 Journal article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue 1 Pages 10726  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behaviour of the two-dimensional electron system forming at the interface of SrTiO<sub>3</sub>-based oxide heterostructures. The occurrence of AHE is often interpreted as a signature of ferromagnetism, but it is becoming more and more clear that also paramagnets may contribute to AHE. We studied the influence of magnetic ions by measuring intermixed LaAlO<sub>3</sub>/GdTiO<sub>3</sub>/SrTiO<sub>3</sub>at temperatures below 10 K. We find that, as function of gate voltage, the system undergoes a Lifshitz transition while at the same time an onset of AHE is observed. However, we do not observe clear signs of ferromagnetism. We argue the AHE to be due to the change in Rashba spin-orbit coupling at the Lifshitz transition and conclude that also paramagnetic moments which are easily polarizable at low temperatures and high magnetic fields lead to the presence of AHE, which needs to be taken into account when extracting carrier densities and mobilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000658820100014 Publication Date 2021-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 5 Open Access OpenAccess  
  Notes J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme ESTEEM3 under grant agreement 823717. The Qu-Ant-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government.; esteem3TA; esteem3reported Approved Most recent IF: 4.259  
  Call Number EMAT @ emat @c:irua:179608 Serial 6822  
Permanent link to this record
 

 
Author (up) Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G. pdf  doi
openurl 
  Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
  Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 5 Issue 2 Pages 1700921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423173800005 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access  
  Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872  
Permanent link to this record
 

 
Author (up) Liao, Z.; Gauquelin, N.; Green, R.J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z.; Li, L.; Si, L.; Van Aert, S.; Hansmann, P.; Held, K.; Xia, J.; Verbeeck, J.; Van Tendeloo, G.; Sawatzky, G.A.; Koster, G.; Huijben, M.; Rijnders, G. pdf  doi
openurl 
  Title Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations Type A1 Journal article
  Year 2017 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 27 Issue 17 Pages 1606717  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Thickness-driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry, or rather to a change of structure with varying film thickness. Here, this study presents direct evidence for the relaxation of oxygen-2p and Mn-3d orbital (p-d) hybridization coupled to the layer-dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic, and magnetic structures together with X-ray absorption spectroscopy demonstrate the central role of thickness-dependent p-d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400449200011 Publication Date 2017-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 55 Open Access  
  Notes M.H., G.K., and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. J.V. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (Grant Nos. G.0044.13N, G.0374.13N, G.0368.15N, and G.0369.15N). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. N.G., J.G., S.V.A., and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which was funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:152640 Serial 5367  
Permanent link to this record
 

 
Author (up) Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author (up) Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 425-431  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.  
  Address MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372591700017 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 273 Open Access  
  Notes We would like to acknowledge Dr. Evert Houwman for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010- 246102 IFOX. J.V. and S.V.A. acknowledges funding from FWO project G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103- N13), and Calculations have been done on the Vienna Scientific Cluster (VSC).; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 39.737  
  Call Number c:irua:133190 c:irua:133190UA @ admin @ c:irua:133190 Serial 4041  
Permanent link to this record
 

 
Author (up) Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al. openurl 
  Title Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record  
  Impact Factor 12.124 Times cited Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:134842 Serial 4176  
Permanent link to this record
 

 
Author (up) Lin, N. openurl 
  Title Dynamics of interacting clusters in low-dimensional superconductors Type Doctoral thesis
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:102534 Serial 776  
Permanent link to this record
 

 
Author (up) Lin, N.S.; Heitmann, T.W.; Yu, K.; Plourde, B.L.T.; Misko, V.R. url  doi
openurl 
  Title Rectification of vortex motion in a circular ratchet channel Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 14 Pages 144511-144511,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortices in an asymmetric (i.e., consisting of triangular cells) ring channel driven by an external ac current I in a Corbino setup. The asymmetric potential rectifies the motion of vortices and induces a net vortex flow without any unbiased external drive, i.e., the ratchet effect. We show that the net flow of vortices strongly depends on vortex density and frequency of the driving current. Depending on the density, we distinguish a single-vortex rectification regime (for low density, when each vortex is rectified individually) determined by the potential-energy landscape inside each cell of the channel (i.e., hard and easy directions) and multi-vortex, or collective, rectification (high-density case) when the inter-vortex interaction becomes important. We analyze the average angular velocity ω of vortices as a function of I and study commensurability effects between the numbers of vortices and cells in the channel and the role of frequency of the applied ac current. We have shown that the commensurability effect results in a stepwise ω-I curve. Besides the integer steps, i.e., the large steps found in the single-vortex case, we also found fractional steps corresponding to fractional ratios between the numbers of vortices and triangular cells. We have performed preliminary measurements on a device containing a single weak-pinning circular ratchet channel in a Corbino geometry and observed a substantial asymmetric vortex response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295795500010 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; We thank Peter Kes and Marcel Hesselberth for providing the superconducting films from which the Corbino ratchet sample was fabricated. This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl (Belgium). T. W. H., K.Y., and B. L. T. P acknowledge support from the National Science Foundation under Grant DMR-0547147 as well as the use of the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS-0335765). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92809 Serial 2848  
Permanent link to this record
 

 
Author (up) Lin, N.S.; Misko, V.R.; Heitmann, T.W.; Yu, K.; Plourde, B.L.T. pdf  doi
openurl 
  Title Density dependence of the rectification of vortex motion in a circular asymmetric channel Type A1 Journal article
  Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 137-139  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the rectification of vortex motion in an asymmetric ring channel in a Corbino setup. With an applied ac current, the motion of vortices in the channel is rectified by the asymmetric potential and induces a dc net flow. The net flow in such a system strongly depends on vortex density, and we distinguish “single-vortex'' rectification regime (for low density, when each vortex is rectified individually) determined by the potential-energy landscape inside each cell of the channel and ”multi-vortex'', or "collective'', rectification (high density case) when the interaction between vortices becomes important. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000308580600032 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.404 Times cited Open Access  
  Notes ; This work was supported by the "Odysseus'' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme – Belgian State – Belgian Science Policy, and the FWO-Vl (Belgium). ; Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101873 Serial 635  
Permanent link to this record
 

 
Author (up) Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 13 Pages 134504,1-134504,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277207900079 Publication Date 2010-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the “Odysseus” program of the Flemish Government and the Flemish Science Foundation (FWO-V1), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-V1. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82803 Serial 779  
Permanent link to this record
 

 
Author (up) Lin, N.S.; Misko, V.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex dynamics in mesoscopic superconducting corbino disks Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 19 Pages 197003,1-197003,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000266207700063 Publication Date 2009-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 18 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:77396 Serial 3800  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: