|
Record |
Links |
|
Author |
Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P. |
|
|
Title |
On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization |
Type |
A1 Journal article |
|
Year |
2022 |
Publication |
Acta materialia |
Abbreviated Journal |
Acta Mater |
|
|
Volume |
239 |
Issue |
|
Pages |
118247-118249 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000861076600004 |
Publication Date |
2022-08-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1359-6454 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.4 |
Times cited |
5 |
Open Access |
OpenAccess |
|
|
Notes |
The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. |
Approved |
Most recent IF: 9.4 |
|
|
Call Number |
UA @ admin @ c:irua:191432 |
Serial |
7186 |
|
Permanent link to this record |