|
Record |
Links |
|
Author |
Godet, M.; Vergès-Belmin, V.; Gauquelin, N.; Saheb, M.; Monnier, J.; Leroy, E.; Bourgon, J.; Verbeeck, J.; Andraud, C. |
|
|
Title |
Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Micron |
Abbreviated Journal |
Micron |
|
|
Volume |
115 |
Issue |
|
Pages |
25-31 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Nd-YAG QS laser cleaning of soiled stone at 1064 nm can sometimes result in a more yellow appearance compared to other cleaning techniques. Especially in France, this yellowing effect is still considered as a major aesthetic issue by the architects and conservators. One explanation states that the yellowing is linked to the formation of iron-rich nanophase(s) through the laser beam interaction with black crusts that would re-deposit on the cleaned substrate after irradiation. To characterize these nanophases, a model crust containing hematite was elaborated and laser irradiated using a Nd-YAG QS laser. The color of the sample shifted instantaneously from red to a bright yellow and numerous particles were ablated in a visible smoke. Transmission electron microscopy (TEM) was used to examine the morphology and the crystallinity of the neo-formed compounds, both on the surface of the samples and in the ablated materials. In addition, an investigation of the chemical and structural properties of the nanophases was conducted by X-ray dispersive energy (EDX) and electron energy loss (EELS) spectroscopies. It was found that both the surface of the sample and the ablated materials are covered by crystallized nano-spheres and nano-residues, all containing iron and oxygen, sometimes along with calcium and sulfur. In particular an interfacial area containing the four elements was evidenced between some nanostructures and the substrate. Magnetite Fe3O4 was also identified at the nanoscale. This study demonstrates that the laser yellowing of a model crust is linked to the presence of iron-rich nanophases including CaxFeySzOδ nanostructures and magnetite Fe3O4 at the surface after irradiation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000449125600004 |
Publication Date |
2018-08-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0968-4328 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
1.98 |
Times cited |
9 |
Open Access |
Not_Open_Access: Available from 19.08.2020
|
|
|
Notes |
The authors wish to thank Valérie Lalanne for the sample preparation for TEM and Stijn Van den Broeck for the FIB cut elaboration. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). |
Approved |
Most recent IF: 1.98 |
|
|
Call Number |
EMAT @ emat @c:irua:154356UA @ admin @ c:irua:154356 |
Serial |
5056 |
|
Permanent link to this record |