Berry phase engineering at oxide interfaces

D. J. Groenendijk,1,‡ C. Autieri,2,3,† T. C. van Thiel,1,†,‡ W. Brzezicki,2,3,† J. R. Hortensius,1,† K. H. W. van den Bos,4 S. van Aert,1,§ J. Verbeeck,4 A. Filippetti,5,6 S. Picozzi,2 M. Cuoco,2,7,‡ and A. D. Caviglia1,§

1Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, Netherlands
2Consiglio Nazionale delle Ricerche, CNR-SPIN, Italy
3International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02068 Warsaw, Poland
4Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
5Dipartimento di Fisica, Università di Cagliari, Cagliari, Monserrato 09042-I, Italy
6CNR-IOM, Istituto Officina dei Materiali, Cittadella Universitaria, Cagliari, Monserrato 09042-I, Italy
7Dipartimento di Fisica “E. R. Caianiello” Università degli Studi di Salerno, 84084 Fisciano, Italy

§Corresponding author: a.caviglia@tudelft.nl
†t.c.vanthiel@tudelft.nl
*These authors contributed equally to this work.

Three-dimensional strontium ruthenate (SrRuO$_3$) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO$_3$ in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO$_3$ exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO$_3$/SrRuO$_3$/SrTiO$_3$) and asymmetric interfaces (SrTiO$_3$/SrRuO$_3$/SrIrO$_3$). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO$_3$ embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO$_3$ proposed here naturally accounts for these observations and harmonizes a large body of experimental results.

DOI: 10.1103/PhysRevResearch.2.023404

I. INTRODUCTION

In topologically nontrivial band structures, electrons acquire an additional phase factor when their wave functions traverse a closed loop in momentum space [1]. Although this concept is now commonly referred to as the Berry phase mechanism, Karplus and Luttinger already demonstrated decades earlier that the anomalous Hall effect—which is prevalent in itinerant ferromagnets—finds its origins in band topology [2]. In addition to the usual band dispersion contribution, electrons in an electric field E acquire an anomalous velocity:

$$\mathbf{v}(k) = \frac{1}{\hbar} \frac{\partial E(k)}{\partial \mathbf{k}} = \frac{e}{\hbar} E \times \mathbf{b}(k),$$

where $E(k)$ is the dispersion relation and $\mathbf{b}(k)$ is the momentum-space Berry curvature. The latter term describes the nontrivial geometry of the band structure and acts as an effective magnetic flux, which generally underlies topological transport phenomena such as the quantum, spin, and anomalous Hall effect (AHE) [1–5]. The anomalous velocity is transverse to the electric field and gives rise to a Hall current, with a sign and magnitude that depend sensitively on the band structure topology. In systems with ferromagnetic order and sizable spin-orbit coupling (SOC), the Berry curvature is strongly enhanced near avoided band crossings, which act as a source or sink of the emergent magnetic field [6]. A prototypical system is the transition-metal oxide SrRuO$_3$ (SRO), a 4d itinerant ferromagnet [7]. Its anomalous Hall conductivity in the bulk depends sensitively on the magnetization and on the position of the Fermi energy with respect to the Weyl points in the three-dimensional (3D) electronic spectra [5,8–10]. Extrinsic (scattering) mechanisms are known to contribute to the AHE in SRO [11–13]. However, when the Weyl points are in close proximity to the Fermi energy the intrinsic Berry curvature mechanism becomes dominant [10], particularly at temperatures far below the Curie point [5,11]. The Berry curvature is particularly sensitive to electronic reconstructions. Accordingly, integrating ultrathin SRO within heterostructures is a promising route to engineer topological transport phenomena. A suitable material for this purpose is SrIrO$_3$ (SIO), a 5d paramagnetic semimetal with strong atomic SOC (∼0.4 eV) [14–18] and excellent structural compatibility with SRO.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
Recently, the behavior and control of the AHE in SRO ultrathin films and heterostructures have been at the center of intense research [19–28], fueled by the observation of humplike features in the transverse resistivity [29]. Such features are generally considered to be a manifestation of the topological Hall effect (THE). In this scenario, noncollinear spin textures give rise to Berry curvature sources in real space [30–32]. Embedding SRO in SrTiO\(_3\) (STO) and SrIrO\(_3\) (SIO) heterostructures (SIO/SRO/STO) sets a favorable environment for nontrivial spin textures (e.g., skyrmions) because of the strong SOC present in SIO and the breaking of inversion symmetry [19,29]. Moreover, humplike features in the Hall response have also been observed in SRO thin films interfaced with STO and vacuum [33–37], pointing to an important role played by asymmetric boundary conditions and momentum-space sources of Berry curvature. Despite a number of seminal contributions, a unifying scheme is still lacking. In this work we perform a theoretical analysis of the low-energy electronic structure and band topology of SRO in the two-dimensional limit. We reveal spin-polarized topologically nontrivial bands at the Fermi energy, associated with sources of Berry curvature, bringing about competing contributions to the anomalous Hall response. We subsequently use these insights to investigate theoretically and experimentally the AHE in ultrathin SRO films with (a)symmetric boundary conditions. Our results highlight the importance of momentum-space Berry curvature contributions, in addition to the real-space sources discussed so far.

The remainder of the article is organized as follows: in Sec. II we present the methodology regarding the density functional theory (DFT) calculations, sample fabrication, and the structural and magnetotransport characterization. Section III is devoted to the main results; (1) the Hall effect measurements in symmetric and asymmetric heterostructures (SRO interfaced with SIO and STO) and (2) the theoretical calculations of the Hall conductivity, combining DFT and effective tight-binding modeling for the designed heterostructures. Section IV contains a discussion and concluding paragraph.

II. METHODS

A. Density functional theory calculations

First-principles DFT calculations were performed using the VASP [38] package based on plane-wave basis set and projector augmented wave method [39]. A plane-wave energy cutoff of 500 eV was used. For the treatment of the exchange-correlation, the LSDA (local spin density approximation) with the Perdew-Zunger [40] parametrization of the Ceperly-Alder data [41] for the exchange-correlation functional was considered. The choice of the LSDA exchange functional is suggested by Etz et al. [42], where it was shown that the LSDA is a better approximation than the generalized gradient approximation for bulk SRO and its heterostructures [43,44]. In our simulations, the STO/SRO/SIO heterostructure was constructed using a lateral supercell of \(\sqrt{2}a \times \sqrt{2}a\), while the phases without rotations were contracted using a lateral supercell of \(a \times a\). The in-plane lattice parameter was fixed to the STO substrate, while for the out-of-plane lattice parameters the experimental values of the single unit cell of SRO and SIO were used. The hopping parameters were estimated from the electronic structure of the nonmagnetic SRO/SIO and SRO/STO interfaces without Coulomb repulsion. After obtaining the Bloch wave functions from DFT, the maximally localized Wannier functions [45,46] were constructed using the WANNIER90 code [47]. Starting from an initial projection of atomic \(d\)-basis functions belonging to the \(t_2g\) manifold and centered on metal sites, the \(t_2g\)-like Wannier functions were obtained. To extract the hopping parameters from the electronic bands at low energies, the Slater-Koster interpolation, as implemented in WANNIER90, was used. This approach is applied to determine the real space Hamiltonian matrix elements in the \(t_2g\)-like Wannier function basis for the SRO/SIO and SRO/STO interfaces.

B. Sample fabrication

SRO/STO, SRO/SIO/STO, and SIO/SRO/SIO/STO heterostructures were prepared by pulsed laser deposition on \(TiO_2\)-terminated STO(001) substrates. The films were deposited at 600 °C in an oxygen pressure of 0.1 mbar. The laser fluence was 1.2 J/cm\(^2\) and the repetition rate was 1 Hz. The samples were annealed at 550 °C in an oxygen pressure of 300 mbar and cooled down in the same pressure at a rate of 20°C/min. The growth was monitored by reflection high-energy electron diffraction (RHEED), indicating a layer-by-layer growth mode for all three materials.

C. Structural and magnetotransport characterization

Atomic scale characterization of the lattice structure was performed on an aberration corrected STEM. The FEI Titan 80-300 microscope was operated at 300 kV and the samples were prepared in a vacuum transfer box and analyzed in a Gatan vacuum transfer holder to avoid any influence of air on the film [48,49]. Collection angles for HAADF imaging, ABF imaging, and EELS were 44–190, 8–17, and 47 mrad, respectively. The STEM-EELS measurements show that there is negligible diffusion of Ru and Ti, whereas there is a measurable diffusion of Ir into the top RuO\(_2\) layer. The heterostructures were further investigated by synchrotron x-ray diffraction measurements and atomic force microscopy (see Sec. I A of the Supplemental Material [50]). Hall bars were patterned by e-beam lithography and the heterostructure was contacted by Ar milling and \textit{in situ} deposition of Pd and Au, resulting in low resistance Ohmic contacts. An STO capping layer was used to impose symmetric boundary conditions or to prevent degradation of the SIO layer [17,18,51]. Transport measurements were performed in a He flow cryostat with a 10 T superconducting magnet and a base temperature of 1.5 K. Measurements in current-bias configuration were performed by sourcing a low frequency (∼17 Hz) 10 μA current and measuring the resulting (longitudinal and transverse) voltage drop with a lock-in amplifier.

III. RESULTS

We first analyze theoretically the properties of ultrathin SRO, starting from the Ru-based \(t_{2g}\) electronic structure close to the Fermi level. Our \textit{ab initio} derived tight-binding
calculations show that the Berry curvature of the individual bands is strongly enhanced at avoided band crossings due to next-nearest-neighbor interorbital hopping [Fig. 1(a)] in the presence of SOC. We first focus on the monolayer SRO system. Its electronic structure can be arranged in two groups of three bands with different spin-orbital parity. Within each sector there are two topologically nontrivial bands carrying a Chern number $C = \pm 2$, accompanied by a single, trivial band with $C = 0$ [see Fig. 1(b)]. The ensuing Berry curvature of the nontrivial bands, which have a predominantly dxz polarization, is shown in Fig. 1(c). We find sharp peaks located at the avoided bands crossings. Since the lowest energy bands in Fig. 1(b) have a nontrivial Chern number, the Berry curvature of the individual heterostructures as function of temperature. The curves are offset horizontally. (g) Temperature evolution of the amplitude of the AHE (R_{xy}^{AH}). (h) Evolution of the intrinsic contribution to σ_x for Ru/Ti, Ru/Ir, and Ru/Ru bilayers as a function of the average Ru magnetization. The dashed black line indicates the approximate saturated magnetization value of the STO/SRO/SIO determined from SQUID measurements.
energy loss spectroscopy (EELS) shows that the Ti/Ru and Ti/Ir interfaces are atomically sharp, while at the Ru/Ir interface there is a diffusion of Ir into the topmost RuO₂ layer. In addition, the thicknesses of both the SRO and SIO layers are 4 u.c. as designed (see also Sec. I C of the Supplemental Material [50]). After quantifying atomic column positions in the HAADF-STEM image using StatSTEM [52], a detailed analysis of the atomic positions shows that octahedral tilts are suppressed and both the SRO and SIO tend to a tetragonal rather than an orthorhombic symmetry as in their bulk form. In addition, we find that the tetragonality \((c/a)\) ratio of the unit cell varies strongly across the SRO and SIO layers [Fig. 2(a)]. Since the magnetic anisotropy of SRO is known to be sensitive to strain and tetragonality [53–55], this affects the local magnetization of the Ru atoms. Theoretical calculations with multilayer configurations corresponding to the designed heterostructures show that the temperature dependent sign change of the AHE is well reproduced by the combined \(ab \text{ initio}\) and tight-binding modeling (see Sec. V D of the Supplemental Material [50]). Furthermore, we demonstrate that the reversal temperature and amplitude of the AH conductance \((R_{xy})\) is accumulated on opposite terminals, resulting in opposite signs of the anomalous amplitude, majority spin considered as a superposition of AH channels with opposite sign and suitable weights [56–58]. Indeed, the data are well described by two such channels, each having a slightly different coercive field [see Fig. 3(a)]. When a current is applied in the plane of the heterostructure and an out-of-plane magnetic field is varied in the range \([0, B, -B, 0]\), the total AHE is given by the sum of the AHE of the two contributions (this assumption is valid for small Hall angles, which is appropriate for SRO [28], see also Sec. II F of the Supplemental Material [50]). Depending on their relative magnitudes, three different behaviors can be discerned for \(B_{c, \text{II}} < B_{c, \text{I}}\). In Fig. 3(b) we present a sketch of the corresponding real-space picture. For opposite signs of the anomalous amplitude, majority spin is accumulated on opposite terminals, resulting in opposite Hall voltages. When the anomalous amplitudes are equal in magnitude, the total AHE reduces to zero. In Fig. 3(c) the ordinary Hall component has been subtracted and the remaining anomalous Hall component \((R_{xy}^{\text{AH}})\) is presented. As the temperature is increased from 46 K towards 51 K, the behavior of the total AHE evolves from the leftmost scenario in Fig. 3(a) to the rightmost scenario, with the middle scenario emerging at \(T_R = 48\) K. Accordingly, we fit the experimental data with two oppositely oriented AHE loops, as \(R_{xy}^{\text{AH}} = R_{xy}^{\text{AH}1} \tanh[\omega(B - B_{c, \text{I}})] + R_{xy}^{\text{AH}2} \tanh[\omega(B - B_{c, \text{II}})]\), where \(\omega\) is a parameter describing the slope at \(B_c\). An excellent agreement is obtained between this model [dashed black lines in Fig. 3(b)] and the data, enabling us to extract the individual AH components as a function of temperature [Fig. 3(d)]. The corresponding \(R_{xy}^{\text{AH}}\) values are shown in Fig. 3(e); both

![Image](https://via.placeholder.com/150)

FIG. 2. Anomalous Hall effect of ultrathin SRO heterostructures with asymmetric boundary conditions. (a) Mean tetragonality of the perovskite unit cell across the heterostructure. (b) HAADF-STEM measurement of a STO/SRO/SIO heterostructure. (c) and (d) Measured Hall resistance of (c) an asymmetric STO/SRO/SIO heterostructure and (d) a symmetric STO/SRO/STO heterostructure as function of temperature. The curves are offset horizontally.
components show a smooth evolution in temperature, with one disappearing above 58 K (green) and the other below 35 K (purple). At 48 K the two components are equal, leading to the fully compensated case. The dashed lines illustrate a possible temperature dependence of \(R_{xy}^{AHE} \), (f) In- and out-of-plane magnetization for an (green) STO/SRO/STO and (purple) STO/SRO/SIO heterostructure, measured by SQUID.

There are various observations to be made concerning the relationship between the emergence of two opposite sign AH channels and the role of (in- and out-of-plane) inhomogeneities in the magnetization. First, we point out that the magnetic anisotropy is strongly affected by symmetric boundary conditions. Figure 3(f) compares the in- and out-of-plane magnetization for an STO/SRO/STO and STO/SRO/SIO heterostructure. We observe that at SRO interfaces, the out-of-plane component of the magnetization is reduced and an in-plane component emerges. Considering the tetragonality profile discussed in Fig. 2(a), a nonuniform magnetization along the growth axis is expected, giving rise to the emergence of two opposite AH channels as two effective layers. The impact of an inhomogeneous magnetic anisotropy is also deduced from the theoretical calculations performed for an asymmetric STO/SRO/SIO heterostructure with 4 u.c. SRO (see Fig. S20 in the Supplemental Material [50]). Second, we note that an in-plane distribution of coercive fields may also play a role. In this scenario, the plane would be broken up into various domains with different switching fields and different AH amplitudes. The agreement of the data with the double AH model then suggests a bimodal distribution of switching fields [Figs. 4(a) and 4(b)]. Such a scenario arises naturally at asymmetric heterostructures, where intermixing with the top layer (SIO) or an incomplete surface termination (vacuum) is common. For the employed phenomenological model, the choice of two AH loops with slightly different coercive fields is fully compatible with the field and temperature dependence of the AHE [Figs. 3(c)–3(e)] and of the magnetization [Fig. 4(c)], as extracted from measurements of the magneto-optical Faraday effect [Fig. 4(d)]. In particular, comparing the magnetization loops for the two-coercive fields model, the choice of two AH loops with slightly different coercive fields is generally nonlinear and not equivalent for the electronic
FIG. 4. Superposition of AH and magnetization loops. (a) Two separate (opposite) AH components as a function of the applied field and (b) the resulting total R_{xy}^{AH} for the case of two different coercive fields (indicated by the open circles). (c) Simulated magnetization profile as a function of the applied field, comparing a single loop with a double loop scenario. The two magnetization loops are extracted from the AH curves in (a) and are equal in magnitude. (d) Measured Faraday rotation angle as a function of the applied field for various temperatures ranging from 40 to 75 K. The curves are offset horizontally for visual clarity.

states having opposite sign Berry curvatures, then one can, in general, produce an imbalance with a humplike profile of the Hall response close to the magnetization switching point (see Sec. II E of the Supplemental Material [50]). The two-channel AH model should also be of relevance to other systems displaying the topological Hall effect, provided that a sign inversion is enabled by a temperature-dependent Hall response. It has also been proposed in the context of magnetically doped topological insulators [59].

IV. CONCLUSION

Finally, we discuss the scenario proposed here in the context of recent studies performed on SRO thin films and heterostructures, where similar anomalous Hall characteristics were observed and attributed to the topological Hall effect due to a skyrmion phase [19,29,60]. Although within this picture the topological Hall effect would be enhanced in the SIO/SRO/SIO case due to Dzyaloshinskii-Moriya interaction at both interfaces (contrary to our observation), our data cannot exclude contributions from real-space Berry curvature effects due to noncollinear spin textures forming in a specific range of temperature and magnetic fields. Our analysis highlights robust topological effects due to nontrivial Berry curvature in reciprocal space and that this scenario explains the superposition of AH components in asymmetric structures. We remark that, due to the strong connection between the magnetization and AHE, there is likely an interplay between noncollinear magnetism and the momentum-space Berry curvature. Hence, SRO-based heterostructures represent a unique platform to exploit and investigate the interplay of Berry curvature effects in both real and momentum space. The evolution of 3D Weyl points to pairs of topological bands in the 2D limit is a phenomenon that is not limited to ruthenates, but extends to magnetic t_{2g} systems in general. The same holds for the sensitivity of the total Berry curvature to interface effects and thus we expect that similar phenomenology would arise in other heterostructures based on ferromagnetic t_{2g} systems. In this respect, transition-metal oxides are an ideal platform owing to a delicate interplay between spin, charge, and lattice degrees of freedom. Our results establish that oxide interfaces host tunable topological phenomena, thereby providing new perspectives in the field of oxide electronics.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ACKNOWLEDGMENTS

The authors thank Y. Blanter, G. Koster, M. Golden, A. M. R. V. L. Monteiro, I. Lindfors-Vrejoiu, M. Gabay, J.-M. Triscone, S. Gariglio, and M. Kawasaki for discussions. The authors thank M. Gibert for experimental support. This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program, by the Research Foundation Flanders (FWO, Belgium), and by the European Research Council under the European Union’s Horizon 2020 programme/ERC Grant Agreements No. 677458, No. 770887, and No. 731473 (Quantox of QuantERA).
ERA-NET Cofund in Quantum Technologies). C.A. and S.P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO.” C.A. acknowledges the CINECA award under the ISCRA initiative IsC54 “CAMEO” Grant, for the availability of high performance computing resources and support. W.B. acknowledges support by Narodowe Centrum Nauki (NCN, National Science Centre, Poland) Project No. 2016/23/B/ST3/00839. The work is supported by the Foundation for Polish Science through the IRA Programme co-financed by the European Union within SG OP. N.G. and J.V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.

The authors declare no competing financial interests.