toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P. doi  openurl
  Title Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal  
  Volume 11 Issue 47 Pages 26265-26276  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108752600001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:201007 Serial 9031  
Permanent link to this record
 

 
Author Peeters, H.; Raes, A.; Verbruggen, S.W. pdf  doi
openurl 
  Title Plasmonic photocatalytic coatings with self-cleaning, antibacterial, air and water purifying properties tested according to ISO standards Type A1 Journal article
  Year 2024 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal  
  Volume 451 Issue Pages 115529-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract ISO 10678:2010, ISO 22197–1 and 2, ISO 27447:2019 and ISO 27448:2009 for the photocatalytic degradation of organic dyes (methylene blue), air pollution (NOx and acetaldehyde), bacteria (E. coli and S. aureus) and solid organic fouling (oleic acid) are performed on plasmon-embedded TiO2 thin films on Borofloat® glass, as well as the commercially available titania-based self-cleaning glass PilkingtonActivTM. These standardised protocols measure the performance for the four main applications of photocatalytic materials: water purification, air purification, antibacterial and self-cleaning activity, respectively. The standards are performed exactly as prescribed to measure the activity under UV irradiation, and also in a slightly adapted manner to measure the performance under simulated solar light or visible light. Performing experiments according to ISO standards, enables an objective comparison amongst samples tested here, as well as with results from literature. This is a major asset compared to the myriad of customised setups used in laboratories worldwide that hinder a fair comparison. We point at the importance of meticulously following the ISO instructions, as we have noticed that multiple published studies adopting the ISO standards too often deviate from these protocols, thereby nullifying the added value of standardized testing. Following the ISO tests to the letter, we have demonstrated the superior performance of a previously developed plasmonic titania coating with fully embedded gold-silver nanoparticles towards all four application areas. Furthermore, our empirical data strongly support the need for a nuanced understanding of standardized testing, to ensure accurate assessment of photocatalytic materials. An examination of the ISO standards used in this work reveals notable drawbacks, including concerns about the reliability of the methylene blue degradation protocol, the issues of HNO3 accumulation in the NOx removal test, and limitations in assessing antibacterial activity and water contact angles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1010-6030 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:203203 Serial 9075  
Permanent link to this record
 

 
Author Minja, A.C.; Ag, K.R.; Raes, A.; Borah, R.; Verbruggen, S.W. doi  openurl
  Title Recent progress in developing non-noble metal-based photocathodes for solar green hydrogen production Type A1 Journal article
  Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal  
  Volume 43 Issue Pages 101000  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocathodes play a vital role in photoelectrocatalytic water splitting by acting as catalysts for reducing protons to hydrogen gas when exposed to light. Recent advancements in photocathodes have focused on addressing the limitations of noble metal-based materials. These noble metal-based photocathodes rely on expensive and scarce metals such as platinum and gold as cocatalysts or ohmic back contacts, respectively, rendering the final system less sustainable and costly when applied at scale. This mini-review summarizes the important recent progress in the development of non-noble metal-based photocathodes and their performance in the hydrogen evolution reaction during photoelectrochemical (PEC) water splitting. These advancements bring non-noble metal-based photocathodes closer to their noble metal-based counterparts in terms of performance, thereby paving the way forward toward industrial-scale photoelectrolyzers or PEC cells for green hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved (down) no  
  Call Number UA @ admin @ c:irua:202625 Serial 9080  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved (down) Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Ninakanti, R.; Dingenen, F.; Borah, R.; Peeters, H.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Plasmonic hybrid nanostructures in photocatalysis : structures, mechanisms, and applications Type A1 Journal article
  Year 2022 Publication Topics in Current Chemistry Abbreviated Journal  
  Volume 380 Issue 5 Pages 40-62  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term “hybrid” implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core–shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000839670500009 Publication Date 2022-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2364-8961 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189825 Serial 7195  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Minjauw, M.M.; Solano, E.; Sree, S.P.; Asapu, R.; Van Daele, M.; Ramachandran, R.K.; Heremans, G.; Verbruggen, S.W.; Lenaerts, S.; Martens, J.A.; Detavernier, C.; Dendooven, J. pdf  doi
openurl 
  Title Plasma-enhanced atomic layer deposition of silver using Ag(fod)(PEt3) and NH3-plasma Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 17 Pages 7114-7121  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A plasma-enhanced atomic layer deposition (ALD) process using the Ag(fod)(PEt3) precursor [(triethylphosphine)(6,6,7,7,8,8,8-heptafluoro-2,2-dimethy1-3,5-octanedionate)silver(I)] in combination with NH3-plasma is reported. The steady growth rate of the reported process (0.24 +/- 0.03 nm/cycle) was found to be 6 times larger than that of the previously reported Ag ALD process based on the same precursor in combination with H-2-plasma (0.04 +/- 0.02 nm/cycle). The ALD characteristics of the H-2-plasma and NH3-plasma processes were verified. The deposited Ag films were polycrystalline face-centered cubic Ag for both processes. The film morphology was investigated by ex situ scanning electron microscopy and grazing-incidence small-angle X-ray scattering, and it was found that films grown with the NH3-plasma process exhibit a much higher particle areal density and smaller particle sizes on oxide substrates compared to those deposited using the H-2-plasma process. This control over morphology of the deposited Ag is important for applications in catalysis and plasmonics. While films grown with the H-2-plasma process had oxygen impurities (similar to 9 atom %) in the bulk, the main impurity for the NH3-plasma process was nitrogen (similar to 7 atom %). In situ Fourier transform infrared spectroscopy experiments suggest that these nitrogen impurities are derived from NH surface groups generated during the NH3-plasma, which interact with the precursor molecules during the precursor pulse. We propose that the reaction of these surface groups with the precursor leads to additional deposition of Ag atoms during the precursor pulse compared to the H-2-plasma process, which explains the enhanced growth rate of the NH3-plasma process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410868600012 Publication Date 2017-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes ; M.M.M. and J.D. acknowledge the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO Vlaanderen) for financial support through a personal research grant. We also acknowledge FWO Vlaanderen for providing project funding for this work. We are grateful to the ESRF staff for smoothly running the synchrotron and beamline facilities. We also thank Olivier Janssens for performing the SEM measurements and Stefaan Broekaert for mechanical assistance. J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem). ; Approved (down) Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:146757 Serial 5983  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S. pdf  url
doi  openurl
  Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 160 Issue Pages 204-210  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000340687900024 Publication Date 2014-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 37 Open Access OpenAccess  
  Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (down) Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:117094 Serial 2608  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S. pdf  doi
openurl 
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 156 Issue Pages 116-121  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000336013200014 Publication Date 2014-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 84 Open Access  
  Notes Flanders(FWO); Methusalem Approved (down) Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:115552 Serial 2646  
Permanent link to this record
 

 
Author Hauchecorne, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, D.; Terrens, D.; Smits, M.; Vinken, K.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic degradation of ethylene : an FTIR in situ study under atmospheric conditions Type A1 Journal article
  Year 2011 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 105 Issue 1/2 Pages 111-116  
  Keywords A1 Journal article; Engineering sciences. Technology; Molecular Spectroscopy (MolSpec); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper, the reaction mechanism of the photocatalytic oxidation of ethylene is elucidated by means of an in-house developed FTIR in situ reactor. This reactor allowed us to look at the catalytic surface at the moment the reactions actually occur. This new approach gave some exciting new insights in how ethylene is photocatalytically oxidised. It was found that there is a change in dipole moment of the ethylene molecule when it is brought in the neighbourhood of the catalyst. From this finding, a hypothesis was formulated on how the CC-bond from ethylene will break. It was found that the aforementioned interaction between the catalyst and the molecule, allows the excited electrons from the UV irradiated catalyst to occupy the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule through a process known as backdonation. Following this hypothesis, it was found that the degradation occurs through the formation of two intermediates: formaldehyde and formic acid, for which formaldehyde is bound in two different ways (coordinatively and as bidentate). Finally CO2 and H2O are found as end products, resulting in the complete mineralisation of the pollutant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291907400013 Publication Date 2011-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 29 Open Access  
  Notes ; The authors wish to thank the University of Antwerp for the funding of this research; Evonik, who delivered the photocatalyst and the 3rd grade bachelor students of the bio-science engineering department, who accompanied us in this work: Britt Berghmans, Margot Goossens, Ozlem Kocak and Laurent Van Linden. ; Approved (down) Most recent IF: 9.446; 2011 IF: 5.625  
  Call Number UA @ admin @ c:irua:89256 Serial 5978  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 188 Issue 188 Pages 147-153  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372677500016 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 47 Open Access OpenAccess  
  Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (down) Most recent IF: 9.446  
  Call Number c:irua:130995 Serial 4061  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 200 Issue 200 Pages 31-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384775600004 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 45 Open Access OpenAccess  
  Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (down) Most recent IF: 9.446  
  Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Mul, G. pdf  doi
openurl 
  Title Editorial overview : photocatalysis 2022 shining light on a diversity of research opportunities Type Editorial
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 42 Issue Pages 100838-2  
  Keywords Editorial; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034184800001 Publication Date 2023-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197220 Serial 8854  
Permanent link to this record
 

 
Author Blommaerts, N.; Vanrompay, H.; Nuti, S.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles Type A1 Journal article
  Year 2019 Publication Small Abbreviated Journal Small  
  Volume 15 Issue 15 Pages 1902791  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It has been presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including EDX tomography, and Finite Element Method modeling to support the observations. From the electron tomography results, the core-shell structure could be clearly visualized and the spatial distribution of gold and silver atoms could be quantified. Theoretical simulations are performed to demonstrate that even though UV-Vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482637100001 Publication Date 2019-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 26 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1S32617N G.0369.15N G.0381.16N ; Approved (down) Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:161636 Serial 5290  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
  Year 2023 Publication Chemsuschem Abbreviated Journal  
  Volume 16 Issue 5 Pages e202201647-25  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926901300001 Publication Date 2023-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 8.4; 2023 IF: 7.226  
  Call Number UA @ admin @ c:irua:193633 Serial 7335  
Permanent link to this record
 

 
Author Raes, A.; Ninakanti, R.; Van den Bergh, L.; Borah, R.; Van Doorslaer, S.; Verbruggen, S.W. url  doi
openurl 
  Title Black titania by sonochemistry : a critical evaluation of existing methods Type A1 Journal article
  Year 2023 Publication Ultrasonics sonochemistry Abbreviated Journal  
  Volume 100 Issue Pages 106601-106609  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Theory and Spectroscopy of Molecules and Materials (TSM²); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the field of photocatalysis, the fabrication of black titania is a booming topic, as it offers a system with improved solar light harvesting properties and increased overall efficiency. The darkening of white TiO2 powders can be ascribed to surface hydroxylation, oxygen vacancies, Ti3+ centres, or a combination thereof. A handful of studies suggests these defects can be conveniently introduced by acoustic cavitation, generated during sonochemical treatment of pristine TiO2 powders. In reproducing these studies, P25 TiO2 samples were ultrasonicated for various hours with a power density of 8000 W/L, resulting in powders that indeed became gradually darker with increasing sonication time. However, HAADF–STEM revealed that extensive erosion of the sonotrode tip took place and contaminated the samples, which appeared to be the primary reason for the observed colour change. This was confirmed by UV–Vis DRS and DRIFTS, that showed no significant alteration of the catalyst surface after sonication. EPR measurements showed that only an insignificant fraction of Ti3+ centres were produced, far less than in a TiO2 sample that was chemically reduced with NaBH4. No evidence of the presence oxygen vacancies could be found. The enhanced photocatalytic activities of ultrasonicated materials reported in literature can therefore not be ascribed to the synthesis of actual black (defected) TiO2, but rather to specific changes in morphology as a result of acoustic cavitation. Also, this study underlines the importance of considering probe erosion in sonochemical catalyst synthesis, which is an unavoidable side effect that can have an important impact on the catalyst appearance, properties and performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001084391500001 Publication Date 2023-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4177 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 8.4; 2023 IF: 4.218  
  Call Number UA @ admin @ c:irua:198848 Serial 8838  
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 142 Issue Pages 110866  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632316600003 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:175701 Serial 8642  
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 41577-41585  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417005900057 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 29 Open Access OpenAccess  
  Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved (down) Most recent IF: 7.504  
  Call Number EMAT @ emat @c:irua:147243 Serial 4804  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P. pdf  url
doi  openurl
  Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume 354 Issue Pages 129403-129418  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059413200001 Publication Date 2023-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024  
  Notes Approved (down) Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number UA @ admin @ c:irua:197987 Serial 8829  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 323 Issue Pages 124269-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799165400007 Publication Date 2022-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187830 Serial 7159  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved (down) Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial 7190  
Permanent link to this record
 

 
Author Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S. pdf  url
doi  openurl
  Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 9186-9191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437007700028 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved (down) Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959  
Permanent link to this record
 

 
Author Van Hoecke, L.; Kummamuru, N.B.; Pourfallah, H.; Verbruggen, S.W.; Perreault, P. pdf  url
doi  openurl
  Title Intensified swirling reactor for the dehydrogenation of LOHC Type A1 Journal article
  Year 2023 Publication International journal of hydrogen energy Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the recent advances towards more sustainable global energy supply, H2 is a possible alternative for large scale energy storage. In this view, Liquid Organic Hydrogen Carriers (LOHC) are a class of molecules that allow for easier long term energy storage compared to conventional H2 technologies. CFD simulations were used to showcase the hydrodynamics of the dehydrogenation of a LOHC in a new reactor unit, via a cold flow mock-up study. This reactor was designed to allow for a swirling motion of the liquid carrier material, favouring the removal of H2 gas from the flow and forcing the equilibrium of the reaction towards dehydrogenation, as well as to keep the catalyst particles in motion. The CFD simulations were validated qualitatively with experimental operation of the reactor, in a system with identical dimensionless numbers (Reynolds and Stokes), in order to use less costly products during the prototyping phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139598200001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.2 Times cited Open Access Not_Open_Access: Available from 01.03.2024  
  Notes Approved (down) Most recent IF: 7.2; 2023 IF: 3.582  
  Call Number UA @ admin @ c:irua:198534 Serial 8889  
Permanent link to this record
 

 
Author Jammaer, J.; Aprile, C.; Verbruggen, S.W.; Lenaerts, S.; Pescarmona, P.P.; Martens, J.A. doi  openurl
  Title A non-aqueous synthesis of TiO2SiO2 composites in supercritical CO2 for the photodegradation of pollutants Type A1 Journal article
  Year 2011 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 4 Issue 10 Pages 1457-1463  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296497400010 Publication Date 2011-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 15 Open Access  
  Notes ; The authors acknowledge sponsorship from CECAT and Methusalem (long-term financing of the Flemish government). We thank Dr. E. Gobechiya for assistance with XRD measurements and A. Lemaire for assistance with mercury porosimetry measurements. ; Approved (down) Most recent IF: 7.226; 2011 IF: 6.827  
  Call Number UA @ admin @ c:irua:93363 Serial 5973  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Van Hal, M.; Bosserez, T.; Rongé, J.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Harvesting hydrogen gas from air pollutants with an un-biased gas phase photo-electrochemical cell Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 7 Pages 1413-1418  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The concept of an all-gas-phase photo-electrochemical cell (PEC) producing hydrogen gas from volatile organic contaminated gas and light is presented. Without applying any external bias, organic contaminants are degraded and hydrogen gas is produced in separate electrode compartments. The system works most efficiently with organic pollutants in inert carrier gas. In the presence of oxygen gas, the cell performs less efficiently but still significant photocurrents are generated, showing the cell can be run on organic contaminated air. The purpose of this study is to demonstrate new application opportunities of PEC technology and to encourage further advancement toward photo-electrochemical remediation of air pollution with the attractive feature of simultaneous energy recovery and pollution abatement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398838600017 Publication Date 2017-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 6 Open Access  
  Notes ; S.W.V. and J.R. acknowledge the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. T.B. and J.A.M. acknowledge the Flemish government for long-term structural funding (Methusalem). Nicolaas Schewyck is greatly thanked for his experimental work during his master thesis. ; Approved (down) Most recent IF: 7.226  
  Call Number UA @ admin @ c:irua:140922 Serial 5955  
Permanent link to this record
 

 
Author Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Activity versus selectivity in photocatalysis : morphological or electronic properties tipping the scale Type A1 Journal article
  Year 2016 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 344 Issue Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper a structure-activity and structure-selectivity relation is established for three commercial TiO2 sources (P25, P90, and PC500). Morphological and electronic parameters of the photocatalysts are determined using widely applicable and inexpensive characterization procedures. More specifically, the electronic properties are rigorously characterized using an electron titration method yielding quantitative information on the amount of defect sites present in the catalyst. Surface photovoltage measurements on the other hand provide complementary information on the charge carrier recombination process. As model reaction, the degradation of a solid layer of stearic acid is studied using an in situ FTIR reaction cell that enables to investigate the catalyst surface and possible formation of reaction intermediates while the reactions are ongoing. We show that the order of photocatalytic conversion is PC500 > P90 > P25, matching the order of favorable morphological properties. In terms of selectivity to CO2 formation (complete mineralization), however, this trend is reversed: P25 > P90 > PC500, now matching the order of advantageous electronic properties, i.e. low charge carrier recombination and high charge carrier generation. With this we intend to provide new mechanistic insights using a wide variety of physical, (wet) chemical and operando analysis methods that aid the development of performant (self-cleaning) photocatalytic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390182800022 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 10 Open Access  
  Notes ; M.K. acknowledges Flemish Agency for Innovation & Entrepreneurship for the doctoral scholarship. S.W.V. acknowledges the Fonds Wetenschappelijk Onderzoek (FWO) for a post-doctoral fellowship. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved (down) Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:136339 Serial 5926  
Permanent link to this record
 

 
Author Chinnabathini, V.C.; Dingenen, F.; Borah, R.; Abbas, I.; van der Tol, J.; Zarkua, Z.; D'Acapito, F.; Nguyen, T.H.T.; Lievens, P.; Grandjean, D.; Verbruggen, S.W.; Janssens, E. doi  openurl
  Title Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 14 Pages 6696-6708  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968631100001 Publication Date 2023-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access Not_Open_Access  
  Notes Approved (down) Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:196040 Serial 7988  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis Type A1 Journal article
  Year 2015 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 262 Issue Pages 1-8  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work two methods for determining the LangmuirHinshelwood kinetic parameters for a slit-shaped flat bed photocatalytic reactor are compared: an analytic mass transfer based model adapted from literature and a computational fluid dynamics (CFD) approach that was used in conjunction with a simplex optimization routine. Despite the differences between both approaches, similar values for the kinetic parameters and similar trends in terms of their UV intensity dependence were found. Using an effectiveness-NTU (number of transfer units) approach, the analytic mass transfer based method could quantify the relative contributions of the rate limiting steps through a reaction effectiveness parameter. The numeric CFD approach on the other hand could yield the two kinetic parameters that determine the photocatalytic reaction rate simultaneously. Furthermore, it proved to be more accurate as it accounts for the spatial variation of flow rate, reaction rate and concentrations at the surface of the photocatalyst. We elaborate this dual kinetic analysis with regard to the photocatalytic degradation of acetaldehyde in air over a silicon wafer coated with a layer of TiO2 P25 (Evonik) and study the usefulness and limitations of both strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347577700001 Publication Date 2014-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 30 Open Access  
  Notes ; S.W.V. acknowledges the Research Foundation of Flanders (FWO) for financial support. ; Approved (down) Most recent IF: 6.216; 2015 IF: 4.321  
  Call Number UA @ admin @ c:irua:119724 Serial 5927  
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S. pdf  doi
openurl 
  Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 209 Issue Pages 494-500  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000311190500058 Publication Date 2012-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 12 Open Access  
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved (down) Most recent IF: 6.216; 2012 IF: 3.473  
  Call Number UA @ lucian @ c:irua:105185 Serial 2609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: