

This item is the archived peer-reviewed author-version of:

Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators

Reference:

Khan Shahid Ullah, Trashin Stanislav, Beltran Victoria, Korostei Yuliya S., Pelmus Marius, Gorun Sergiu M., Dubinina Tatiana, V., Verbruggen Sammy, De Wael Karolien.- Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Analytical chemistry - ISSN 0003-2700 - 94:37(2022), p. 12723-12731 Full text (Publisher's DOI): https://doi.org/10.1021/ACS.ANALCHEM.2C02210 To cite this reference: https://hdl.handle.net/10067/1906020151162165141

uantwerpen.be

Institutional repository IRUA

Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators

Shahid Ullah Khan^{1,2,3}, Stanislav Trashin^{1,2}, Victoria Beltran^{1,2}, Yuliya S. Korostei⁴, Marius Pelmus⁵, Sergiu M. Gorun⁵, Tatiana V. Dubinina^{4,6}, Sammy W. Verbruggen^{2,3} and Karolien De Wael^{1,2,*}

¹A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium; ²NANOlab Center of Excellence, University of Antwerp, 2020 Antwerp, Belgium; ³DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium; ⁴Institute of Physiologically Active Compounds, Russian Academy of Science, 14243 Chernogolovka, Moscow Region, Russian Federation; ⁵Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, New Jersey, 07079, USA; ⁶Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation

*Corresponding author: karolien.dewael@uantwerpen.be

ABSTRACT: Dye-sensitized TiO₂ has found many applications for dye-sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron-shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO₂ materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich *tert*-butyl substituents (*t*-Bu₄PcZn, *t*-Bu₄PcAlCl, and *t*-Bu₄PcH₂). The materials were compared with previously developed TiO₂ modified by electron-deficient, also sterically hindered fluorinated phthalocyanine $F_{64}PcZn$, a singlet oxygen (¹O₂) producer, as well as its metal-free derivative, $F_{64}PcH_2$. The PEC activity depended on the redox mediator, as well as type of TiO₂ and Pc. By comparing the responses of one-electron shuttles, such as $K_4Fe(CN)_4$, and ¹O₂-reactive electron-shuttles, such as phenol, it is possible to distinguish the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. *t*-Bu₄PcAlCl showed significantly lower blank responses and higher specific responses towards chlorophenols compared to *t*-Bu₄PcZn due to the electron-withdrawing effect of Al³⁺ metal center. The combination of reactivity insights and the need for only μ g amounts of sensing materials renders the reported system advantageous for practical applications.

INTRODUCTION

Photocatalytically and photoelectrochemically active materials, such as dye-sensitized semiconductors have found utility for environmental remediation¹⁻³, solar-to-chemical energy conversion^{4, 5}, (bio)sensors^{6, 7}, and dye-sensitized solar cells.^{8, 9} Photoelectrochemical (PEC) devices and materials are of particular interest for sensors.^{10, 11} The separation of excitation sources (optics) and detection modus operandi (electrochemistry) improves the performances of PEC devices as sensors^{12, 13}, leading to faster responses, higher sensitivity, and the elimination of undesired backgrounds.¹⁴⁻¹⁶

Efficient PEC materials exhibit special structural and energetic features. Thus, materials such as nanostructured semiconducting oxides^{17, 18}, carbon-based materials¹⁹, and metal nanoparticles²⁰ have been exploited for PEC analysis. Titanium dioxide, TiO₂, is, arguably, the benchmark photocatalyst due to its nontoxic nature, photochemical stability, and low cost.^{21, 22} However, the photoactive anatase TiO₂ has a 3.2 eV wide bandgap, limiting its photocatalytic activity to the UV region.²³ Approaches to extend TiO₂ absorption to the visible region include doping^{21, 23} and deposition of Vis-NIR absorbing photosensitizers (PSs) on its surface.24,25

Phthalocyanines (Pcs) are extensively conjugated macrocycles structurally related to chlorophyll and porphines, Fig. 1. Their extensive conjugation ensures a narrow HOMO-LUMO gap, consequently absorbing light in the visible region of the electromagnetic spectrum. Pcs have been widely used as PSs due to their high extinction coefficients, superior thermal and chemical stability, high quantum yields for triplet state formation, and ¹O₂ generation.²⁶⁻²⁸ Furthermore, the compositional and structural versatility of Pcs allows tuning their chemical and photophysical properties, particularly for enhancing their chemical robustness and introducing functional groups that, for example, may serve to anchor Pcs on various surfaces.^{29, 30}

Most of the previously reported PEC sensors rely on a photoinduced electron transfer from a PS to a semiconductor, followed by an electron transfer from the semiconductor to an electrode, Fig. 2A.³¹⁻³⁴ The electrode, in this case, is polarized accordingly to play a role of the electron acceptor (anode). We have recently reported a different PEC sensing approach, namely the use of a PS to generate analyte-oxidizing singlet oxygen, ¹O₂, Fig. 2B.^{6, 11, 30, 35} The used PS, F₆₄PcZn, Fig. 1D, contains bulky, perfluorinated iso-propyl peripheral substituents that ensure it remains a single-site catalyst both in solution and solid-state films and resists the destructive action of ${}^{1}O_{2}$ and its daughter radicals.³⁶ Notably, the supporting TiO₂ semiconductor is not subject to electron injection from the photoexcited $F_{64}PcZn$ due to the electron-withdrawing effect of fluorine substituents that stabilize the LUMO by more than 1 eV³⁷ relative to PcZn, Fig 1C. Thus, in the presence of TiO₂, the visible-light photogenerated ${}^{1}O_{2}$ is the main reactive species for the chemical conversion of analytes such as hydroquinone or phenol, playing the role of redox mediators. The subsequent electrochemical reduction of oxidized (oxygenated) analytes at the cathode creates an electrochemical reduction-photocatalytic oxidation redox cycle, thus enhancing the obtained steady-state photocurrent response.⁶

Figure 1. Selected natural and related, synthetic macrocycles that absorb light in the visible region: chlorophyll (A), porphine (B), unsubstituted zinc phthalocyanine M = Zn (C), fluoroalkyl phthalocyanine F₆₄PcM, M = Zn, 2H (D), alkyl phthalocyanine *t*-Bu₄PcM, M = Zn, AlCl, 2H (E).

Here we report the preparation and properties of semiconducting TiO₂ composites containing electron-rich phthalocyanines namely t-Bu₄PcZn, t-Bu₄PcAlCl, and t-Bu₄PcH₂, Fig. 1E. Unlike the electron-withdrawing, bulky iso-perfluoropropyl groups, the electron releasing tert-butyl groups facilitate the injection of an electron from the photoexcited PS into the CB of TiO_2 . However, a few µm thick layer of powdered TiO_2 does not provide an interface for an efficient electron transfer from TiO₂ to an underlying electrode, especially in the presence of O₂ as an alternative electron acceptor. Therefore, we put forward the new PEC detection mechanism (Fig. 2C), based on the redox shuttling not involving ¹O₂ formation. The photoexcited PS injects an electron into the CB of TiO₂ which is electrically disconnected from an electrode. The analyte (A) shuttles electrons from an electrode to the PS, restoring its initial redox state (Fig. 2C).

Previously, Bard and co-workers³¹ studied a PEC system based on unsubstituted phthalocyanines, Fig. 1C, and TiO₂ single crystals in electrical contact with an In-Ga alloy, Fig. 2A. Those measurements were conducted under an N₂ atmosphere to exclude scavenging of electrons from the CB of TiO₂ by O₂. In contrast, the photocurrent in our system is measured under ambient conditions and using powder PS-TiO₂ drop-casted from water suspension on screen-printed electrodes. Instead of direct electron transfer, the PEC responses in our system result from the conversion of redox species freely diffusing in the near-electrode layer, Fig. 2C. The use of the electron-shuttling mechanism to probe the reactivity of bulk Pc-TiO₂ materials and detect analytes capable of the reversible redox cycling is reported here for the first time.

Figure 2. PEC detection of an analyte based on (A) the direct electron transfer from PS to the conduction band (CB) of TiO_2 and then to a polarized electrode, (B) photosensitized formation of ${}^{1}O_2$, (C) and the electron shuttling without ${}^{1}O_2$ formation.

EXPERIMENTAL

Materials. Zinc 2, 9, 16, 23-tetra-tert-butyl-phthalocyanine (t-Bu₄PcZn, Mr = 802, purity 95%), 2, 9, 16, 23-tetra-tert-butyl-29H, 31H-phthalocyanine (t-Bu₄PcH₂, Mr = 739, purity 97%), Zinc phthalocyanine (PcZn, Mr = 578, purity 97%) were purchased from Sigma-Aldrich (Belgium). Aluminum tetra-tertbutylphthalocyanine, t-Bu₄PcAlCl (t-Bu₄PcAlCl, Mr = 799),³⁹ the perfluorinated phthalocyanine zinc complex ($F_{64}PcZn$, Mr = $(F_{64}PcH_2, Mr = 2003)^{41, 42}$, Mr = 2003)^{41, 42}, were synthesized as previously described. The chemical structures of the Pcs used in this study are shown in Fig. 1C-E. Hydroquinone (HQ, 99.5%) was purchased from Acros Organics, Belgium. Methanol (CH₃OH, 99.8% HPLC grade) was purchased from Fisher Chemical. KH2PO4 and KCl were purchased from Sigma-Aldrich (Belgium). Ultrapure MQ water was used for all experiments. Titanium dioxide (TiO2), Aeroxide P25 and Aeroxide P90 were obtained from Evonik Inorganic Materials

(USA). TiO₂ PC500 was obtained from CristalActiV. Amoxicillin trihydrate of purity >98.0% and oxytetracycline hydrochloride of purity >95.0% were obtained from TCI Europe (Belgium). Cefadroxil of purity > 99.0% was obtained from Acros-Organics and tetracycline of purity 98.0-102.0% was obtained from Sigma-Aldrich (Belgium). Other phenolic compounds were of 98% purity or better and were obtained from different suppliers. L-Ascorbic acid of 99.5% purity was obtained from Sigma-Aldrich (Belgium). The solid-state properties of the TiO₂ supports are given in Table S1. Nitrogen adsorption-desorption isotherms were measured using a 3P Meso 112 instrument. All samples were degassed overnight at 100 °C prior to use. The specific surface area was calculated from nitrogen adsorption isotherms by the Brunauer-Emmett-Teller (BET) method. The pore size distribution and pore volume were calculated by the Brunauer-Joyner-Halenda (BJH) method. Contact angle measurements were carried out with an Ossila sessile drop-based contact angle goniometer equipped with a high-resolution camera (1920 x 1080). The volume of the droplet used was 4 μ L.

Pcs-supported TiO₂ (PcsUTiO₂) modified electrodes. The Pcs were dissolved in an appropriate solvent (t-Bu₄PcAlCl and t-Bu₄PcZn in isopropanol, t-BuPcH₂ in THF, F₆₄PcZn and $F_{64}PcH_2$ in ethanol) to reach 1 mg/mL (1.3-1.5 mM for *t*-Bu₄Pcs and 0.5 mM for F₆₄Pcs). Next, 10 mg TiO₂ was added in 0.33 mL of each solution, and the solvents were evaporated at 60°C using a thermal shaker (Thermo Scientific). Then 1 mL of MQ water was added to the dried powders, vortexed, and sonicated until a milk-like homogenous suspension of 10 mg/mL PcsUTiO₂was obtained. The immobilization procedure yields 3 wt% loading of Pcs, confirmed spectrophotometrically by back leaching the Pcs with organic solvents. Other loadings for t-Bu₄PcAlCl/Zn/2H were prepared similarly using more diluted or more concentrated Pcs solutions. F₆₄PcH₂UTiO₂ 3 wt% was also prepared from a more diluted 0.03 mg/mL (0.015 mM) solution in EtOH to ensure complete disaggregation of the complex. Before modification, carbon screen-printed electrodes (ItalSens IS-C, working electrode $\emptyset = 3$ mm, obtained from PalmSens, the Netherlands) were first pre-wetted by dropping 1-2 µl 20% ethanol on the working electrode surface. Next, a 5 µL droplet of the 10 mg/mL Pcs∪TiO₂ water suspension was placed on the working electrode and dried in the dark, in a Petri dish containing silica gel desiccant.

Equipment

Electrochemical measurements. Electrochemical measurements were carried out using an Autolab Potentiostat/Galvanostat PGSTAT 302N from Metrohm (Utrecht, The Netherlands), operated with the NOVA 1.11 software. A diode laser emitting at 659 nm (Roithner Lasertechnik, Austria) was adjusted to 30 mW by using a light power meter (Thorlabs). The distance between the laser was set such that the beam entirely covered the working electrode. An Arduino Uno was programmed to switch on and off the light at given time intervals. All electrochemical measurements were performed in a droplet of 80 μ L buffer solution (phosphate buffer pH 7) containing 0.1 M KCl and 0.02 M KH₂PO₄ dissolved in ultrapure water. All measurements were conducted first in pure buffer until a stable signal and then in the presence of an electron shuttle such as 100 μ M HQ.

Electronic and Vibrational Spectroscopy. A UV-vis AvaSpec-2048L (Avantes) equipped with AvaLight-DH-S-BAL light source was used to record the optical properties of the Pcs. A UV-vis diffuse reflectance (UV-vis-DR) spectrophotometer UV-2600 (Shimadzu) equipped with an integrating sphere was used to record spectra of $Pcs \cup TiO_2$ hybrid materials, referenced to BaSO₄. Transmission FTIR spectra were collected in the 4000 and 400 cm⁻¹ range using a Bruker Alpha II machine with a DTGS detector. Measurements were conducted using KBr pellets (Sigma Aldrich, FTIR grade, ref. 221864). For each sample, 128 scans were accumulated with a resolution of 4 cm⁻¹.

RESULTS AND DISCUSSION

Electronic and vibrational spectroscopy of modified TiO₂ **materials.** Pcs exhibit in solution a narrow absorbance band in the red region (Q band). The Q band position, measured in solution at similar absorbance maxima, can vary significantly as a function of Pc substituents.⁴³ For Pcs immobilized on all TiO₂ supports, UV-vis-DR shows broad peaks in the 500 – 800 nm region, Fig. 3, of insufficient resolution to detect Pc-dependent Q-bands position shifts. For the tested Pcs, immobilization results in the broadening and 10-20 nm redshift of Q-bands, Fig. 3. A new absorbance shoulder at >750 nm appears. The changes correspond to the behavior of Pcs in solid-state films and have been ascribed to molecular distortions and intermolecular interactions through stacking and aggregation.^{44.46} These interactions and aggregations are of concern for PEC measurements due to possible energy dissipation in photoexcited singlet and triplet states,⁴⁷ typically leading to decreased quantum yields and PEC responses, as demonstrated previously for a partially aggregated Al phthalocyanine and its stable dimer.⁴⁸

Figure 3. UV-vis-DR spectra of the utilized unmodified TiO₂ supports (A); UV-Vis spectrum in solution in comparison with UV-vis-DR spectra of deposited *t*-Bu₄PcZn (B), *t*-Bu₄PcAlCl (C), and *t*-Bu₄PcH₂ (D). *t*-Bu₄PcZn/AlCl were dissolved in methanol, *t*-Bu₄PcH₂ in THF.

FTIR spectra of both unmodified and modified TiO₂ are dominated by three major absorbance bands attributed to Ti-O stretching (vTi-O, 600 cm⁻¹), H-O-H deformation (δ O-H, 1630 cm⁻¹), and a broad O-H stretching band associated with water, hydroxyl, and hydrogen bonds (vO-H, ca. 3400 cm⁻¹). When spectra of pure TiO₂ materials are referenced to Ti-O stretching band centered at 600 cm⁻¹, Fig. 4A, two other bands, related to water, increase proportionally with the specific TiO₂ surface area in order P25 < P90 < PC500. This trend mirrors the welldocumented TiO₂ surface propensity to interact with moisture from air, leading to a layer of water adsorbed over the surface and dissociated to some extent.⁴⁹

It is commonly known that a metal center in Pcs can interact with TiO₂ and other metal oxide surfaces due to axial coordination with adsorbed OH groups and water. Metal-free *t*-Bu₄PcH₂ does not have such an anchoring point and should adsorb weaker on metal oxide surfaces compared to *t*-Bu₄PcZn/AlCl, which is consistent with lower mobility of *t*-Bu₄PcAlCl/Zn compared to *t*-Bu₄PcH₂ on TLC plates, Fig. S1. Interestingly, FTIR spectra *t*-Bu₄PcH₂ \cup TiO₂ PC500 show a significant decrease in the region of hydrogen bonds (maximum at 3400 cm⁻¹) compared to *t*-Bu₄PcAlCl \cup TiO₂ Fig. 4B, when the spectra are referenced to the deformation band of

water (1630 cm⁻¹). The difference is even more pronounced for TiO₂ P25 and P90 (Fig. S2). This observation suggests that, compared to t-Bu₄PcH₂ a higher number of hydrogen bonds and OH-groups may form after the immobilization of t-Bu₄PcAlCl and t-Bu₄PcZn. FTIR spectra of pure t-Bu₄PcAlCl and t-Bu₄PcZn also show an increased 3400 cm⁻¹ band, Fig. S3, while this band is minimal in the case of t-Bu₄PcH₂. This is reasonable considering the lack of metal where water could coordinate. Moreover, the FTIR spectrum of t-Bu₄PcAlCl (Fig. S3) shows a characteristic band at 3220 cm⁻¹ attributed to stretching of hydroxyl groups. The band is lower in t-Bu₄PcZn and not detected in t-Bu₄PcH₂ in contrast to the characteristic N-H stretching band in t-Bu₄PcH₂ at 3292 cm⁻¹. The increased bands at 3220 and 3400 cm⁻¹ in *t*-Bu₄PcAlCl show that Cl in *t*-Bu₄PcAlCl does not prevent the interaction of Al³⁺ with water, as per its known lability.⁵⁰

Figure 4. FTIR spectra of (A) bare TiO₂ PC500, P90, and P25 after calibration based on the Ti-O stretching band at 600 cm⁻¹; (B) TiO₂ PC500 unmodified and modified by *t*-Bu₄PcZn/AlCl/2H after calibration using the water deformation band at 1630 cm⁻¹. The same trend is observed for TiO₂ P90 and P25 (Fig. S2).

Energy alignment of Pc molecular orbitals and TiO₂ bands. The relative energy position of the LUMO of Pcs and the CB of TiO₂ determines the possibility for electron injection from photoexcited Pcs into the CB of TiO₂. The absolute energy levels of LUMO can be determined from voltammetric data, namely from the first reduction potentials, using the formula $AVS = -E^{\circ}$ 'Red₁(in V vs. SHE) – 4.5 V, where AVS corresponds to the energy in the absolute voltage scale and E° 'Red₁ is the formal potential for the first reduction transition in Pcs. The formal potentials obtained in acetonitrile, Table S2 and Fig. S4, agree with previous reports on the electron-withdrawing effect of fluorine on formal potentials of the planar Zn phthalocyanine H₁₆PcZn (Fig. 1C) and its fluorinated analog, F₁₆PcZn^{51, ⁵², as well as with DFT calculations that predicted stronger stabilization of LUMO in F₆₄PcZn compared to F₁₆PcZn.³⁷}

The first reduction potential of t-Bu₄PcZn (-0.761 V vs. SHE) and thus the LUMO (-3.74 V in AVS) are shifted by 0.91 V compared to the first reduction potential of F₆₄PcZn (0.150 V vs. SHE) and its LUMO (-4.65 V in AVS). Thus, the LUMO in t-Bu₄PcZn lies above the CB of TiO₂ (-4.21 V in AVS) by 0.47 V, making the electron transfer from a photoexcited t-Bu₄PcZn to TiO₂ favorable. In contrast, the LUMO of F₆₄PcZn lies below the CB of TiO₂ by 0.44 V, making such transfer unfavorable. Interestingly, binding Cl⁻ to Zn may shift the reduction potentials by about 0.3 V, Table S2. Nevertheless, even if Cl⁻ in the water phase binds to immobilized F₆₄PcZn, the potential should still stay below the CB of TiO₂. Fig. 2 shows the positions of the energy bands in alignment with the electrochemical data for F₆₄PcZn and *t*-Bu₄PcZn in acetonitrile. The electrochemical HOMO-LUMO gaps are 1.6 - 1.7 V and correspond to the literature data for other phthalocyanines^{39, 51, 52},

the energy of the Q-band (hc/ λ onset) and previous DFT calculations.³⁷ In comparison to *t*-Bu₄PcZn, E°'Red₁ of *t*-Bu₄PcH₂ is by 0.23 V lower⁵³ (the LUMO is by 0.23 V higher) and E°'Red₁ of *t*-Bu₄PcAlCl is by 0.28 V higher³⁹ (the LUMO is by 0.28 V lower) due to the effect of the central metal. Nevertheless, it does not change the general picture principally. All three *t*-Bu₄PcZn, *t*-Bu₄PcAlCl, and *t*-Bu₄PcH₂ should be able to transfer an electron from photoexcited PS to TiO₂ according to the mechanism depicted in Fig. 2C.

Confirmation of the reaction mechanism by PEC measurements. Fig. 5A-D shows the voltammetric behavior of four different electron donors. HQ and K₄Fe(CN)₆ demonstrate reversible redox transition at 0.028 V (0.312 V vs. SHE) and 0.160 V (0.444 V vs. SHE), respectively, Fig. 5A and C. Phenol, in addition to its irreversible oxidation at 0.57 V (0.85 V vs. SHE), Fig. 5B, also electropolymerizes at the electrode surface giving, in the next successive scans, a pair of broad waves around 0.2 V (0.48 V vs. SHE) that are also seen after washing the electrode and conducting the same voltammetric measurements in pure buffer, Fig. 5B. This behavior is driven by the formation of phenolic cation radicals.54, 55 Its polymerization causes the electrode fouling expressed as a decrease in the phenol oxidation peak current and its shift towards higher potentials with cycle number. In contrast to others, ascorbic acid behaves fully irreversibly with a transition around 0.08 V (0.36 V vs. SHE), Fig. 5D, which is close to the potential of HQ.

Unlike phenol, HQ is oxidized reversibly to benzoquinone (BQ) via an electron transition process without obvious side reactions, Fig 5A. It is also known that HQ readily oxidizes into BQ by ${}^{1}O_{2}{}^{56-58}$, also noted in our previous studies with solubilized ${}^{1}O_{2}$ producing photosensitizers.⁴⁸ At potentials lower than 0 V, BQ is reduced back to HQ, as per the cyclic voltammogram shown in Fig. 5A. Thus, HQ can serve as an electron shuttle in both systems, viz. the electron transition and ${}^{1}O_{2}$ formation, Fig. 2B and C. Indeed, a high photocurrent is observed in the presence of HQ for electrodes modified with *t*-Bu₄PcZn \cup TIO₂, Fig. 5E, and F₆₄PcZn \cup TiO₂, Fig. 5I. The photocurrent is about 4x higher in the case of F₆₄PcZn, most probably due to faster reaction kinetics and efficient ${}^{1}O_{2}$ formation.

Importantly, phenol behaves differently in the reaction with ${}^{1}O_{2}$ and at the electron transition. Phenol is oxidized to BQ by ${}^{1}O_{2}$ via an endoperoxide formed as an intermediate by the [4+2]-cycloaddition of ${}^{1}O_{2}$ to its aromatic ring.⁵⁶⁻⁵⁹ In contrast, phenol oxidation via electron transfer leads to a cation radical and subsequent oligomers, thus hindering the reversibility of the process. Accordingly, TiO₂ modified by *t*-Bu₄PcZn gives no significant photocurrent, Fig. 5F, whereas F₆₄PcZn involving ${}^{1}O_{2}$ results in a strong photocurrent, Fig. 5J, which accounts for 20% of that in the presence of HQ.

A well-known one electron donor $K_4Fe(CN)_6$ that exhibits reversible redox behavior, Fig. 5C, gives a strong photocurrent in the case of *t*-Bu₄PcZn, about a half of that in the presence of HQ. In contrast, the use of $F_{64}PcZn$ shows only negligible photocurrents, 3% of the current in the presence of HQ. The low reactivity of ${}^{1}O_{2}$ towards one-electron donors such as $K_4Fe(CN)_6$ is expected, due to the thermodynamically unfavorable formation of superoxide, since the latter has a lower reduction potential compared to $K_4Fe(CN)_6$.^{60, 61} Similar behaviour is observed in the presence of another well-known one-electron donor, ferrocenemethanol, a water-soluble ferrocene derivative with reversible electrochemistry. The photocurrent obtained in

the presence of ferrocenemethanol was 129% of that measured for HQ in the case of t-Bu₄PcZn, but only 14% in the case of

F₆₄PcZn, Table 1.

Figure 5. Voltammetric (CV) (panel A-D) and PEC behavior (panel E-L) of four different electron donors. Four consecutive CV scans were conducted to demonstrate repeatability and possible electrode fouling. Broken line in panel B shows an additional CV scan in pure buffer after rinsing the electrode. Scan rate = 0.02 V/s. All potentials are given vs. the Ag-quasi reference (0.040 V vs. SCE, 0.284 V vs. SHE).

To additionally prove that the generation of ${}^{1}O_{2}$ does not result in noticeable photocurrents in the presence of one-electron donors, we tested both *t*-Bu₄PcZn and F₆₄PcZn in methanol solution using the previously reported setup.⁴⁸ In the absence of TiO₂, *t*-Bu₄PcZn dissolved in methanol is an efficient ${}^{1}O_{2}$ producing photosensitizer^{48, 62}, similar to F₆₄PcZn.^{41, 63} In solutions with the same optical density 0.2 a.u. at the laser wavelength, 659 nm, *t*-Bu₄PcZn and F₆₄PcZn show the same photocurrents ($1.0 \pm 0.1 \ \mu$ A) in the presence of 1 mM HQ and only negligible photocurrents ($0.01 - 0.02 \ \mu$ A) in the presence of 1 mM ferrocenemethanol (Table S3). The results confirm that ${}^{1}O_{2}$ is inefficient in the oxidation of ferrocene, and the comparatively high photocurrents of *t*-Bu₄PcZn on TiO₂ are caused by photoinduced electron transfer reactions.

Finally, ascorbic acid, a well-known one-electron donor with a potential similar to HQ, Fig. 5D, shows no photocurrents for *t*-Bu₄PcZn and $F_{64}PcZn$, Figs. 5H and 5L. Lacking reversibility, ascorbic acid cannot support the redox-cycling mechanism, and thus the electron shuttling between the electrode and the photosensitizer as depicted in Fig. 5D and 2C. This observation also suggests that the photocurrent results from the electron shuttling by the added electron donor, but not from the direct electron transfer mechanisms (Fig. 2A) and not due to secondary ROS such as superoxide that should be formed on TiO₂ as side products of ongoing electron-transfer reactions.

PEC activity of *tert***-butyl-substituted Pcs deposited on TiO₂ materials.** Since HQ is an efficient electron shuttle for evaluation of PEC activity of modified TiO_2 materials that exhibit any of the two (Fig. 2B and C) or a mixed oxidation mechanism, HQ was used to discriminate between highly active and poorly active materials, as well as assess the influence of experimental parameters on the activity of the modified electrodes. Fig. 6 shows PEC responses for electrodes coated by TiO_2 PC500 modified by *t*-Bu₄Pcs. The photocurrents in the presence of HQ remarkably exceed the photocurrents in blank buffer and are essentially reproducible in a sequence of at least four illuminations (the decrease in the photocurrent is less than 10%).

Figure 6. PEC responses of TiO₂ PC500 modified by three different Pcs that inject electrons on CB of TiO₂. Amperometry was conducted in 0.1 M KCl, 0.01 M KH₂PO₄ pH 7 buffer containing 100 μ M HQ. Potential applied = -0.2 V.

The other two TiO₂ materials, P25 and P90, showed lower photocurrents compared to PC500, congruent with the TiO₂ specific surface area, Fig. 7. However, the surface area of PC500, see Table S1, is 5x larger compared to P25, but the PEC response is only 2x higher for *t*-Bu₄PcAlCl and 3x higher for *t*-Bu₄PcZn. This can be explained by taking into account the mesoporous structure of PC500 with a significant fraction of pores in the range of $0.5 - 2 \text{ nm}^{64}$, which can be unavailable for adsorption or blocked by the adsorbed Pc molecules. In general, even for the best configurations, the maximal photocurrents for TiO₂ modified by *tert*-butyl-substituted Pcs are in the range of $0.8 - 0.9 \,\mu\text{A}$ (ca. $12 \,\mu\text{A}\cdot\text{cm}^{-2}$), which is 3-4x lower compared to photocurrents obtained with ¹O₂ generating F₆₄PcZn. This difference should be attributed to the faster HQ oxidation kinetics in the reaction with ${}^{1}O_{2}$ compared to the HQ oxidation via the photoinduced electron transfer.

The influence of the metal centre. Interestingly, t-Bu₄PcH₂ shows 10x lower PEC responses compared to t-Bu₄PcZn and t-Bu₄PcAlCl for all three TiO₂ materials, Fig. 7, although the quantitative deposition of all Pcs was confirmed by leaching them with acetone. The low photocurrent can be explained by a different organization of t-Bu₄PcH₂ molecules on the TiO₂ surface due to the weak interaction of t-Bu₄PcH₂ with the TiO₂, as discussed above in relation to FTIR data. t-Bu₄PcH₂ lacking the metal center that serves as an anchoring point may stay in solution during solvent evaporation until the limited solubility of the Pcs causes its deposition on TiO₂, although likely in aggregated form. Deposition of t-Bu₄PcH₂ in the form of multilayers is also expected due to more favorable interaction of CH-rich t-Bu₄PcH₂ molecules with each other via van der Waals forces compared to their interaction with hydrophilic OH- and O-rich TiO₂ surfaces. Interestingly, contact angle measurements, Fig. S5, for bare and modified TiO₂ materials showed that intrinsically more hydrophobic t-Bu₄PcH₂ (contact angle 157° for t-Bu₄PcH₂ and 107° for *t*-Bu₄PcZn) does not insulate hydrophilic TiO₂ surface in contrast to t-Bu₄PcZn (contact angle 5° for t- Bu_4PcH_2 and 150° for t-Bu_4PcZn), which additionally confirms that t-Bu₄PcH₂ immobilizes in clusters and does not cover the whole available TiO2 surface.

Figure 7. Effect of the TiO₂ specific surface area on the PEC response in the presence of 100μ M HQ.

The role of the metal center was additionally probed by using unsubstituted, planar PcZn, Fig. 1C, which is prone to stacking interaction compared to sterically hindered t-Bu₄PcZn. The PEC responses for unsubstituted PcZn are 3x lower compared to t-Bu₄PcZn in all three TiO₂ materials, but are still significantly higher (in average by a factor of 3) compared to t-Bu₄PcH₂ (Table S4). Thus, the metal center seems to play a crucial role in preserving the PEC activity, likely due to more uniform deposition of Pc on TiO₂ surfaces even when the Pc is prone to aggregation in solution. An electron-deficient F₆₄PcH₂, Fig. 1D, which also lacks the metal center to coordinate on TiO₂ surfaces, similarly lost most of the activity observed for F_{64} PcZn. The photocurrents do not exceed 10% of that obtained for $F_{64}PcZn$ (Table S4). Similar to *t*-Bu₄PcH₂, the decreased PEC activity of $F_{64}PcH_2$ is attributed to low interaction energy between F₆₄PcH₂ and the TiO₂ surfaces leading to likely aggregation and formation of multilayers, which sterically hinder energy transfer to O_2 . Also, the 1O_2 quantum yield of $F_{64}PcH_2$ in methanol solution is only 0.25 compared to 0.61 for $F_{64}PcZn^{63}$, which additionally lowers the comparative $F_{64}PcH_2$ activity in our system.

Interestingly, PEC responses in blank buffer were noticeably higher for t-Bu₄PcZn (-64 \pm 19 nA) compared to t-Bu₄PcAlCl

(-11 ± 5 nA) and *t*-Bu₄PcH₂ (-10 ± 4 nA). In the absence of other electron acceptors than O₂, this blank photocurrent can be explained by the photocatalytic O₂ reduction via (1) direct electrochemical reduction of photoexcited Pcs, followed by a transfer of the electron to O₂ resulting in O₂⁻⁻, (2) further reduction of O₂⁻⁻ and other daughter ROS formed in side reactions. The presence of Cl⁻ or OH⁻ as a distal ligand at the metal center of *t*-Bu₄PcAlCl suppresses the blank photocurrent, and thus suggests the role of O₂ or ¹O₂ coordination in the process.⁶²

The effects of the Pc loading on TiO₂ and the thickness of the coatings on electrodes. The optimal performances of the modified TiO₂ materials and the electrode PEC activity depend on the loading of Pc at TiO₂ and the thickness of PcUTiO₂ coatings on the electrodes. As expected, the PEC response of t-Bu₄PcZn increased when loaded on different TiO₂ materials (expressed in wt%), providing the maximal responses around 800 nA at 3 wt% loadings, Fig. 8A. A similar response is also observed for t-Bu₄PcAlCl at 3 wt% loadings on different TiO₂ materials (Fig. S6A). However, the increase of the loading to 5 wt% does not improve the PEC response, likely due to the formation of multilayers. The value of 3 wt% corresponds, on average to 2.6, 5.5, and 13 nm² areas per a single Pc molecule for TiO₂ P25, P90, and PC500, respectively. The presence of narrow pores in the range of 0.5-2 nm in PC500⁶⁴ that can be unavailable or blocked by adsorbed Pcs may explain the PC500 larger optimal surface area calculated per molecule.

Due to a light-shedding effect, thick electrode coatings by modified TiO₂ can be inefficient. Indeed, varying the amount of $Pc\cup TiO_2$ per electrode surface area in the range from 0.7 to 14 μ g·mm⁻², which roughly corresponds to thicknesses from 0.2 to 3.3 μ m if the layers are uniform, revealed the maximum performance at 11 μ g·mm⁻², Fig. 8B and Fig. S6B. Below this value the photocurrents increase near linearly with the amount of deposited materials. A thicker Pc \cup TiO₂ layer decreases the PEC response by screening the light and reducing the photooxidation efficiency inside the layer at closer distances to the electrode. Thus, the mediated electron exchange current drops due to the larger diffusion distances and correspondingly lower diffusion gradients that define the currents.

Figure 8. Dependence of the photocurrent; (A) on the loading (wt%) of *t*-Bu₄PcZn immobilized on three different TiO₂ materials. (B) thickness of *t*-Bu₄PcZn deposited on the working electrodes. The measuring buffer contained 100 μ M HQ. Potential, -0.25 V. Error bars represent the SD of three independent measurements.

The photocurrent profiles of different phenols. The reversibility of the oxidation/reduction process drives the selectivity of the PEC response of electrodes modified by *t*-Bu₄PcZn/AlCl vs. those modified with $F_{64}PcZn$. Phenol, as discussed above, produces a photocurrent with ¹O₂-generating $F_{64}PcZn$, but not with *t*-Bu₄PcZn, which requires the reversibility of the electrontransfer process, absent for phenol. The reaction of phenol with $^{1}O_{2}$ leads to the formation of an endoperoxide that rearranges to form BQ.⁵⁶⁻⁵⁹ Then electrochemical reduction of BQ gives HQ, which is oxidized again by $^{1}O_{2}$ to form BQ, thus supporting the mechanism depicted in Fig. 2B.

Given potentially broad analytical applications, the range of tested phenols was extended to include important environmental contaminants and pharmaceuticals bearing the phenolic groups, Table 1. The voltammograms for all used compounds, recorded under conditions identical to those shown in Fig. 5 are presented in Fig. S7. Table 1 summarizes the electrochemical characteristics (reversibility and formal potentials) and the photocurrents measured using TiO₂ modified by electron-rich *t*-Bu₄PcZn/AlCl and the electron-deficient, $^{1}O_{2}$ producing F₆₄PcZn.

Importantly, 2,4-dichlorophenol and 2,4,6-trichlorophenol form a new electroactive product under electrochemical oxidation, Fig. S7, resulting in a clear reversible transition at ca. 0 V potential vs. the Ag-quasi reference (0.28-0.29 V vs. SHE),

similar to HQ, Table 1. Thus, once oxidized, 2,4-di- and 2,4,6trichlorophenol can generate photocurrents similarly to HQ. However, the half-peak oxidation potentials are not the same for 2,4-di- and 2,4,6-trichlorophenol (0.795 and 0.759 V vs. SHE, respectively) and lay close to the oxidation potential of t-Bu₄PcZn (0.82 V vs. SHE in a non-aggregated state). Thus, the ability of t-Bu₄PcZn to oxidize 2,4-dichlorophenol is limited, in agreement with the lower photocurrent, in comparison with 2,4,6-trichlorophenol (Table 1). A higher photocurrent, produced in the case of t-Bu₄PcAlCl, is consistent with its 0.28 V higher formal potential vs. t-Bu₄PcZn, as measured in solution, Table S2, which should facilitate the oxidation of 2,4-dichlorophenol. Thus, the selection imparted by the energy values of LUMO (the oxidation potential) of the Pcs gives an additional possibility for adjusting the reactivity towards certain electronshuttling analytes. In contrast, $F_{64}PcZn$ generating ${}^{1}O_{2}$ shows high photocurrents for all chlorinated phenols.

Table 1.	Photoelectroch	emical response	es of analytes a	t different supp	ported photosensitizers

Analyta	E ⁰ 'or E _{p/2} V vs. SHE	Voltammetric	Photocurrent (µA) ^[a]		
Analyte			t-Bu₄PcZn∪TiO ₂	t-Bu₄PcAlCl∪TiO ₂	F ₆₄ PcZn∪TiO ₂
HQ	0.312	Yes	$\textbf{-0.76} \pm 0.03 \; (100\%)$	$-0.85\pm0.02\;(100\%)$	$-3.03 \pm 0.07 \ (100\%)$
Phenol	0.854	No	No response	No response	$\textbf{-0.59} \pm 0.03 \; (19\%)$
K4Fe(CN)6	0.444	Yes	$\textbf{-0.49} \pm 0.01 \; (64\%)$	$\textbf{-0.38} \pm 0.01 \; (45\%)$	$\textbf{-0.09} \pm 0.01 \; (3\%)$
Ferrocenemethanol	0.477	Yes	$\textbf{-0.98} \pm 0.07~(129\%)$	$\textbf{-0.99} \pm 0.02 \; (116\%)$	$\textbf{-0.43} \pm 0.01 \; (14\%)$
L-ascorbic acid Bisphenol A	0.364 0.714	No No	No response No response	No response -0.013 ± 0.003 (2%)	No response $-1.75 \pm 0.08 (58\%)$
2-Chlorophenol	0.828	No	No response	$\textbf{-0.054} \pm 0.005~(6\%)$	$\textbf{-2.16} \pm 0.15 \; (71\%)$
3-Chlorophenol	0.909	No	No response	$\textbf{-0.032} \pm 0.005 \; (4\%)$	$\textbf{-2.84} \pm 0.15 \; \textbf{(94\%)}$
4-Chlorophenol	0.826	No	No response	$\textbf{-0.023} \pm 0.005\;(3\%)$	$\textbf{-1.52}\pm0.08\;(50\%)$
2,4-Dichlorophenol	0.795/0.281 ^[b]	No/Yes ^[b]	$\textbf{-0.071} \pm 0.016~(9\%)$	$\textbf{-0.165} \pm 0.009\;(19\%)$	$\textbf{-2.15} \pm 0.15 \; (71\%)$
2,4,6-Trichlorophenol	0.759/0.294 ^[b]	No/Yes ^[b]	$\textbf{-0.306} \pm 0.008 \; \textbf{(40\%)}$	$\textbf{-0.361} \pm 0.012 \; \textbf{(43\%)}$	-3.76 ± 0.04 (124%)
Amoxicillin	0.913	No	No response	No response	$\textbf{-0.55} \pm 0.03 \; (18\%)$
Cefadroxil	0.925	No	$\textbf{-0.04} \pm 0.01 \; (5\%)$	$\textbf{-0.009} \pm 0.003 \; (1\%)$	$\textbf{-0.68} \pm 0.01 \; (23\%)$
Oxytetracycline	0.924	No	No response	$\textbf{-0.017} \pm 0.003 \; (2\%)$	$\textbf{-0.20} \pm 0.01 \; (7\%)$
Tetracycline	-	-	No response	No response	$\textbf{-0.16} \pm 0.01 \; (5\%)$
Paracetamol	0.542	Yes	$-0.03\pm 0.01\;(4\%)$	$-0.04\pm 0.01\;(5\%)$	$\textbf{-0.10} \pm 0.02\;(3.4\%)$

^[a]No response = less than 0.02 μ A for *t*-Bu₄PcZn \cup TiO₂ and less than 0.01 μ A for *t*-Bu₄PcAlCl \cup TiO₂, in agreement with SD in blanks, which are higher for *t*-Bu₄PcZn \cup TiO₂. ^[b]The second reversible redox process appears after the first scan.

Similar to phenols, the antibiotics amoxicillin, cefadroxil and tetracyclines lack reversibility when oxidized via the electrontransfer pathway, as seen by voltammetry, Fig. S7. This behavior correlates well with the absence of photocurrent when using t-Bu₄PcZn/AlCl, Table 1. Nevertheless, the phenolic group in antibiotics is well detectable by F₆₄PcZn, in agreement with our previous works^{6,11}, via the singlet oxygen pathway. To confirm that TiO₂ does not play an essential role in the generation of a photocurrent in the presence of amoxicillin, an unmodified electrode and the water-soluble photosensitizer Rose Bengal, known to produce ¹O₂ in high yields⁶⁵ were used. In the presence of 5 µM Rose Bengal, 100 µM amoxicillin gives a photocurrent of -0.14 \pm 0.01 μ A, which is similar to the -0.11 \pm 0.01 µA photocurrent obtained in the presence of 100 µM phenol, but about 10% of the -1.34 \pm 0.02 μA photocurrent obtained in the presence of 100 µM HQ (Fig. S8). Thus, ¹O₂ can transform

amoxicillin with an efficacy similar to phenol and generate the corresponding photocurrent without the participation of TiO_2 , in agreement with the mechanism in Fig. 2C.

Surprisingly, another drug bearing a phenolic group, paracetamol, produced a comparatively low photocurrent via both pathways (3-5% of the photocurrent for HQ, Table 1) despite its reversible electrochemistry at the bare electrode (Fig. S7). Thus, additional factors, not just reversibility may distinguish between voltammetric behavior and the photosensitized oxidation redox cycling. The photosensitized oxidation of paracetamol, which seems to be impeded due to quenching of photosensitizers by paracetamol or its oxidized derivatives, remains the subject of future investigations.

The effects of ${}^{1}O_{2}$ quenching and O_{2} purging from the solution. The addition of NaN₃, a known quencher of ${}^{1}O_{2}$, into the measuring solution suppresses the PEC response of

 $F_{64}PcZn$ ∪TiO₂ by 50% at 1 mM NaN₃ and 80% at 10 mM NaN₃, Fig. S9. In the case of *t*-Bu₄PcZn/AlCl∪TiO₂, NaN₃ suppresses the PEC responses only by 10% at 1 mM and 20% at 10 mM NaN₃, Fig. S10, corroborating the role of ¹O₂ for $F_{64}PcZn$ ∪TiO₂. However, the NaN₃ quenching effect should be interpreted carefully since NaN₃ is known to quench photosensitizer's triplet states⁶⁶, essential for the photoinduced electron transition from Pc to TiO₂. In this view, the photocurrent in the presence of phenol or amoxicillin is a more specific marker for ¹O₂ generation, whereas the lack of such photocurrent suggests nil ¹O₂ generation by *t*-Bu₄PcZn/AlCl∪TiO₂.

Notably, the electron-transfer mechanism with redox mediators, Fig. 2C, requires O_2 as an ultimate electron acceptor available in excess and capable of scavenging electrons transferred to the CB of TiO₂. Indeed, the signal drops under Ar purging for 30 min, but recovers after saturation of the measured solution with air, Fig. S11. Similar behavior was previously observed for $F_{64}PcZn\cup TiO_2$,⁶ further confirming the essential role of O_2 for both mechanisms (Fig. 2B and C). Noteworthy, previous studies that utilized the direct electron transfer scheme on the electrode (Fig. 2A) were conducted under N_2 ,³¹ i.e., in the absence of O_2 to avoid competition between the underlying electrode and O_2 for the photo-injected electron. This is not of concern in our system, which is thus suitable for broad applications.

CONCLUSIONS

The paradigm of PEC systems based on the photocatalytic conversion of redox mediators that shuttle electrons between photosensitized TiO_2 and an underlying carbon electrode has been demonstrated. The presented methodology can be used for (1) screening the photocatalytic activity of new photosensitizers and related hybrid materials, (2) ascribing the underlying mechanisms to either the $^{1}O_2$ -mediated photooxidation or the photoinduced electron transition, (3) creating PEC sensors. Moreover, the effects of peripheral substituents and the metal center demonstrate the possibility for modulation of photocatalytic reactivity of photosensitized semiconductors and give insights for creating more efficient photocatalysts and more specific PEC sensors.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Supporting information on solid state properties of TiO₂, TLC, FTIR measurements, formal potentials of Pcs, Pcs responses in solution (methanol), water contact angle measurements, voltammetric behavior of phenols, effect of ${}^{1}O_{2}$ quencher and Photocurrent responses in the absence of O₂ (file type, PDF).

AUTHOR INFORMATION

Corresponding Author

* E-mail: karolien.dewael@uantwerpen.be

Author Contributions

The manuscript was written through contributions of all authors.

ACKNOWLEDGMENT

ERA.Net RUS Plus Plasmon Electrolight project (No. 18-53-76006 ERA) is acknowledged by the Belgian and Russian research groups. The work in Belgium was supported by DOCPRO1 project funding from the University of Antwerp and the BOF-SEP project "Diagnostics for Artworks". The work in the US was supported by DTRA (CB10906) and the Center for Functional Materials. M. Marazabadi is thanked for a sample of $F_{64}PcH_2$.

REFERENCES

- 1. Wang, C.; Li, J.; Mele, G.; Yang, G.-M.; Zhang, F.-X.; Palmisano,
- L.; Vasapollo, G. Appl. Catal. B: Environ., 2007, 76, (3), 218-226.

2. Kluson, P.; Drobek, M.; Krejcikova, S.; Krysa, J.; Kalaji, A.; Cajthaml, T.; Rakusan, J. *Appl. Catal. B: Environ.*, **2008**, 80, (3), 321-326.

- 3. Murphy, S.; Saurel, C.; Morrissey, A.; Tobin, J.; Oelgemöller, M.; Nolan, K. *Appl. Catal. B: Environ.*, **2012**, 119-120, 156-165.
- 4. Jeon, T. H.; Koo, M. S.; Kim, H.; Choi, W. ACS Catalysis 2018, 8, (12), 11542-11563.
- 5. Lianos, P. Appl. Catal. B: Environ., 2017, 210, 235-254.
- 6. Trashin, S.; Rahemi, V.; Ramji, K.; Neven, L.; Gorun, S. M.; De Wael, K. *Nat. Commun.*, **2017**, *8*, (1), 16108.
- 7. Li, F.; Zhou, Y.; Yin, H.; Ai, S. Biosens. and Bioelectron., 2020, 166, 112476.
- 8. Lelii, C.; Bawendi, M. G.; Biagini, P.; Chen, P.-Y.; Crucianelli, M.; D'Arcy, J. M.; De Angelis, F.; Hammond, P. T.; Po, R. *J. Mater. Chem. A*, **2014**, 2, (43), 18375-18382.
- 9. Urbani, M.; Ragoussi, M.-E.; Nazeeruddin, M. K.; Torres, T. Coord. Chem. Rev., 2019, 381, 1-64.
- 10. Yotsumoto Neto, S.; Luz, R. d. C. S.; Damos, F. S. *Electrochem. Commun.*, **2016**, 62, 1-4.
- 11. Neven, L.; Shanmugam, S. T.; Rahemi, V.; Trashin, S.; Sleegers, N.; Carrión, E. N.; Gorun, S. M.; De Wael, K. *Anal. Chem.*, **2019**, 91, (15), 9962-9969.
- 12. Haddour, N.; Chauvin, J.; Gondran, C.; Cosnier, S. J. Am. Chem. Soc., 2006, 128, (30), 9693-9698.
- 13. Gill, R.; Zayats, M.; Willner, I. Angew. Chem. Int. Ed., 2008, 47, (40), 7602-25.
- 14. Hu, Y.; Xue, Z.; He, H.; Ai, R.; Liu, X.; Lu, X. Biosens. and Bioelectron., 2013, 47, 45-49.
- 15. Shi, L.; Yin, Y.; Zhang, L.-C.; Wang, S.; Sillanpää, M.; Sun, H. *Appl. Catal. B: Environ.*, **2019**, 248, 405-422.
- 16. Shu, J.; Tang, D. Anal. Chem. 2020, 92, (1), 363-377.
- 17. Wang, G.-L.; Liu, K.-L.; Dong, Y.-M.; Wu, X.-M.; Li, Z.-J.; Zhang, C. Biosens. and Bioelectron., 2014, 62, 66-72.
- 18. Sivula, K.; van de Krol, R. Nat. Rev. Mater., 2016, 1, (2), 15010.
- 19. Bellani, S.; Antognazza, M. R.; Bonaccorso, F. Adv. Mater., 2019, 31, (9), 1801446.
- 20. Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan,
- M.; Khan, Q.; Maqbool, M. Adv. Funct. Mater., 2020, 30, (7), 1906744.
- 21. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Chem. Rev., 2014, 114, (19), 9824-9852.
- 22. Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Adv. Mat., 2019, 31, (50), 1901997.
- 23. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. *Science* **2001**, 293, (5528), 269-271.
- 24.Won, D.-I.; Lee, J.-S.; Ba, Q.; Cho, Y.-J.; Cheong, H.-Y.; Choi, S.; Kim, C. H.; Son, H.-J.; Pac, C.; Kang, S. O. *ACS Catal.*, **2018**, 8, (2), 1018-1030.
- 25.Reddy, P. Y.; Giribabu, L.; Lyness, C.; Snaith, H. J.; Vijaykumar, C.; Chandrasekharam, M.; Lakshmikantam, M.; Yum, J. H.; Kalyanasundaram, K.; Grätzel, M.; Nazeeruddin, M. K. *Angew. Chem. Int. Ed.*, **2007**, 46, (3), 373-6.

- 26. Claessens, C. G.; Hahn, U.; Torres, T. *The Chem. Rec.*, **2008**, 8, (2), 75-97.
- 27. Mack, J.; Kobayashi, N. Chem. Rev., 2011, 111, (2), 281-321.
- 28. Neamţu, M.; Nădejde, C.; Hodoroaba, V. D.; Schneider, R. J.; Panne, U. Appl. Catal. B: Environ., 2018, 232, 553-561.
- 29. O'Flaherty, S. M.; Hold, S. V.; Cook, M. J.; Torres, T.; Chen, Y.; Hanack, M.; Blau, W. J. *Adv. Mater.*, **2003**, 15, (1), 19-32.
- 30.Carrión, E. N.; Loas, A.; Patel, H. H.; Pelmuş, M.; Ramji, K.; Gorun,
- S. M. J. of Porphyr. and Phthalocyanines 2018, 22, (05), 371-397.
- 31. Giraudeau, A.; Fan, F.-R. F.; Bard, A. J. J. Am. Chem. Soc., 1980, 102, (16), 5137-5142.
- 32. Wang, G.-L.; Xu, J.-J.; Chen, H.-Y.; Fu, S.-Z. Biosens. and Bioelectron., 2009, 25, (4), 791-796.
- 33. Hao, Q.; Wang, P.; Ma, X.; Su, M.; Lei, J.; Ju, H. *Electrochem. Commun.*, **2012**, 21, 39-41.
- 34. Ribeiro, F. W. P.; Moraes, F. C.; Pereira, E. C.; Marken, F.; Mascaro, L. H. *Electrochem. Commun.*, **2015**, 61, 1-4.
- 35. Blidar, A.; Trashin, S.; Carrión, E. N.; Gorun, S. M.; Cristea, C.; De Wael, K. *ACS Sens.*, **2020**, 5, (11), 3501-3509.
- 36.Loas, A.; Gerdes, R.; Zhang, Y.; Gorun, S. M. Dalton Trans. 2011, 40, (19), 5162-5.
- 37. Liao, M. S.; Watts, J. D.; Gorun, S. M.; Scheiner, S.; Huang, M.-J. *J. Theor. Comput. Chem.*, **2008**, 07, (04), 541-563.
- 38. Gerdes, R.; Lapok, L.; Tsaryova, O.; Wöhrle, D.; Gorun, S. M. *Dalton Trans.*, **2009**, (7), 1098-1100.
- 39. Moiseeva, E. O.; Trashin, S.; Korostei, Y. S.; Ullah Khan, S.; Kosov, A. D.; De Wael, K.; Dubinina, T. V.; Tomilova, L. G. *Polyhedron*, **2021**, 200, 115136.
- 40. Lee, H.-J.; Brennessel, W. W.; Lessing, J. A.; Brucker, W. W.;
- Young, J. V. G.; Gorun, S. M. *Chem. Commun.* **2003**, (13), 1576-1577. 41. Bench, B. A.; Beveridge, A.; Sharman, W. M.; Diebold, G. J.; van
- Lier, J. E.; Gorun, S. M. Angew. Chem. Int. Ed. 2002, 41, (5), 747-50. 42. S.M. Gorun; R. Gerdes; O. Tsaryova; Lapok, L.
- Perfluorophthalocyanine Molecules and Methods of Synthesis. 2011. 43. Kobayashi, N.; Ogata, H.; Nonaka, N.; Luk'yanets, E. A. Chemistry
- **2003**, 9, (20), 5123-34. 44. Mizuguchi, J.; Rihs, G.; Karfunkel, H. R. J. Phys. Chem., **1995**, 99,
- (44), 16217-16227.
- 45. Alagna, L.; Capobianchi, A.; Casaletto, M. P.; Mattogno, G.; Paoletti, A. M.; Pennesi, G.; Rossi, G. *J. of Mater. Chem.*, **2001**, 11, (7), 1928-1935.
- 46. Snow, A. W., Phthalocyanine aggregation, The porphyrin handbook. Phthalocyanines: Properties and materials. **2003**; p 129-176.

- 47. Dhami, S.; Phillips, D. J. Photochem. Photobiol. A: Chem., 1996, 100, (1), 77-84.
- 48. Khan, S. U.; Trashin, S. A.; Korostei, Y. S.; Dubinina, T. V.; Tomilova, L. G.; Verbruggen, S. W.; De Wael, K. *ChemPhotoChem* **2020**, 4, (4), 300-306.
- 49. Diebold, U. Surf. Sci. Rep., 2003, 48, (5), 53-229.
- 50.Ou, Z.; Shen, J.; Kadish, K. M. Inorg. Chem., 2006, 45, (23), 9569-9579.
- 51. Schöllhorn, B.; Germain, J. P.; Pauly, A.; Maleysson, C.; Blanc, J. P. *Thin Solid Films* **1998**, 326, (1), 245-250.
- 52.Hesse, K.; Schlettwein, D. J. Electroanal. Chem., 1999, 476, (2), 148-158.
- 53. Gouloumis, A.; Liu, S. G.; Sastre, A.; Vazquez, P.; Echegoyen, L.; Torres, T. *Chemistry* **2000**, 6, (19), 3600-7.
- 54. Ferreira, M.; Varela, H.; Torresi, R. M.; Tremiliosi-Filho, G. *Electrochimica Acta* **2006**, **52**, (2), 434-442.
- 55. Kawde, A.-N.; Morsy, M. A.; Odewunmi, N.; Mahfouz, W. *Electroanal.*, **2013**, 25, (6), 1547-1555.
- 56. Al-Nu'airat, J.; Dlugogorski, B. Z.; Gao, X.; Zeinali, N.; Skut, J.; Westmoreland, P. R.; Oluwoye, I.; Altarawneh, M. *Phys. Chem. Chem. Phys.*, **2019**, 21, (1), 171-183.
- 57. Briviba, K.; Devasagayam, T. P. A.; Sies, H.; Steenken, S. Chem. Res. Toxicol., **1993**, 6, (4), 548-553.
- 58. García, N. A. J. Photochem. Photobiol. B-Biol., **1994**, 22, (3), 185-196.
- 59. Li, C.; Hoffman, M. Z. J. Phys. Chem. A 2000, 104, (25), 5998-6002.
- 60. Wei, Y.; Wu, K.; Wu, Y.; Hu, S. Electrochem. Commun., 2003, 5, (9), 819-824.
- 61. Wood, P. M. Trends Biochem. Sci. 1987, 12, (10), 250-251.
- 62. Kuznetsova, N. A.; Okunchikov, V. V.; Derkacheva, V. M.; Kaliya, O. L.; Lukyanets, E. A. J. *of Porphy. and Phthalocyanines* **2005**, 09, (06), 393-397.
- 63. Minnes, R.; Weitman, H.; Lee, H.-J.; Gorun, S. M.; Ehrenberg, B. *Photochem. Photobiol.*, **2006**, 82, (2), 593-599.
- 64. Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P. *Microporous and Mesoporous Mater.*, **2012**, 156, 62-72.
- 65.Wilkinson, F.; Helman, W. P.; Ross, A. J. Phys. Chem. Ref. Data, 1993, 22, 113-262.
- 66. Harbour, J. R.; Issler, S. L.; Hair, M. L. J. Am. Chem. Soc., 1980, 102, (26), 7778-7779.

