toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Spectrum of exciton states in monolayer transition metal dichalcogenides : angular momentum and Landau levels Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 11 Pages 115439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A four-band exciton Hamiltonian is constructed starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs). The angular part of the exciton wave function can be separated from the radial part, in the case of zero center of mass momentum excitons, by exploiting the eigenstates of the total exciton angular momentum operator with which the Hamiltonian commutes. We explain why this approach fails for excitons with finite center of mass momentum or in the presence of a perpendicular magnetic field and present an approximation to resolve this issue. We calculate the (binding) energy and average interparticle distance of different excited exciton states in different TMDs and compare these with results available in the literature. Remarkably, we find that the intervalley exciton ground state in the -/+ K valley has angular momentum j = +/- 1, which is due to the pseudospin of the separate particles. The exciton mass and the exciton Landau levels are calculated and we find that the degeneracy of exciton states with opposite relative angular momentum is altered by a magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000462896400004 Publication Date 2019-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159406 Serial 5230  
Permanent link to this record
 

 
Author Van Pottelberge, R.; Peeters, F.M. url  doi
openurl 
  Title Tunable circular dipolelike system in graphene : mixed electron-hole states Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 12 Pages 125426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000462900200005 Publication Date 2019-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; We thank M. Van der Donck for fruitful discussions. This work was supported by the Research Foundation of Flanders (FWO-V1) through an aspirant research grant for RVP. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159409 Serial 5237  
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M. url  doi
openurl 
  Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 6 Pages 1981-1989  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000462950400017 Publication Date 2019-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159413 Serial 5262  
Permanent link to this record
 

 
Author Akkerman, Q.A.; Bladt, E.; Petralanda, U.; Dang, Z.; Sartori, E.; Baranov, D.; Abdelhady, A.L.; Infante, I.; Bals, S.; Manna, L. url  doi
openurl 
  Title Fully inorganic Ruddlesden-Popper double CI-I and triple CI-Br-I lead halide perovskite nanocrystals Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 31 Pages 2182-2190  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)(3) or CsPb(Br:I)(3)]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)(3) NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)(3) composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)(3) NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000462950400038 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 58 Open Access OpenAccess  
  Notes ; Q.A.A. and L.M. acknowledge funding from the European Union Seventh Framework Programme under grant agreement no. 614897 (ERC Consolidator Grant “TRANS-NANO”). The work of D.B. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 794560. E.B. and S.B. acknowledge funding from the Research Foundation Flanders (G.038116N, G.03691, and funding of a postdoctoral grant to E.B.). I.I. acknowledges The Netherlands Organization of Scientific Research (NWO) for financial support through the Innovational Research Incentive (Vidi) Scheme (grant no. 723.013.002). The computational work was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159414 Serial 5250  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A. url  doi
openurl 
  Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 9 Issue 1 Pages 5476  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000462990000018 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 5 Open Access OpenAccess  
  Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182  
Permanent link to this record
 

 
Author Yuan, S.; Pu, Z.; Zhou, H.; Yu, J.; Amiinu, I.S.; Zhu, J.; Liang, Q.; Yang, J.; He, D.; Hu, Z.; Van Tendeloo, G.; Mu, S. pdf  url
doi  openurl
  Title A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values Type A1 Journal article
  Year 2019 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 59 Issue 59 Pages 472-480  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The development of a stable, efficient and economic catalyst for hydrogen evolution reaction (HER) of water splitting is one of the most hopeful approaches to confront the environmental and energy crisis. A two-step method is employed to obtain metal clusters (Ru, N, Pd etc.) combining single cobalt atoms anchored on nitrogen-doped carbon (Ru/Pt/Pd@Co-SAs/N-C). Based on the synergistic effect between Ru clusters and single cobalt atoms, Ru@Co-SAs/N-C exhibits an outstanding HER electrocatalytic activity. Specifically, Ru@Co-SAs/N-C only needs 7 mV overpotential at 10 mA cm(-2) in 1 M KOH solution, which is much better than commercial 20 wt% PVC (40 mV) catalyst. Density functional theory (DFT) calculations further reveal the synergy effect between surface Ru nanoclusters and Co-SAs/N-C toward hydrogen adsorption for HER. Additionally, Ru@CoSAs/N-C also exhibits excellent catalytic ability and durability under acidic and neutral media. The present study opens a new avenue towards the design of metal clusters/single cobalt atoms heterostructures with outstanding performance toward HER and beyond.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000463032200051 Publication Date 2019-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 33 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; S.Y., Z.P. and H.Z. contributed equally to this work. This work was financed by the National Natural Science Foundation of China (Grant No. 51372186, 51672204, 51701146) and the Fundamental Research Funds for the Central Universities (WUT: 2017III055, 2018III039GX, 2018IVA095). We express heartfelt thanks to Prof. Gaoke Zhang for the supply of computational resources in the School of Resources and Environmental Engineering, Wuhan University of Technology. ; Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:159330 Serial 5240  
Permanent link to this record
 

 
Author Blondiaux, E.; Bomon, J.; Smolen, M.; Kaval, N.; Lemière, F.; Sergeyev, S.; Diels, L.; Sels, B.; Maes, B.U.W. url  doi
openurl 
  Title Bio-based aromatic amines from lignin-derived monomers Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 7 Issue 7 Pages 6906-6916  
  Keywords A1 Journal article; Engineering sciences. Technology; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A new approach to synthesize valuable 3,4-dialkoxyanilines and alkyl propionates from lignin-derived 4-propylguaiacol and -catechol with overall isolated yields up to 65% has been described. The strategy is based on the introduction of nitrogen via a Beckmann rearrangement. Amino introduction therefore coincides with a C-defunctionalization reaction; overall a replacement of the propyl chain by an amino group is obtained. The process only requires cheap bulk chemicals as reagents/reactants and does not involve column chromatography to purify the reaction products. Furthermore, all carbon atoms from the biorenewable lignin-derived monomers are transformed into valuable compounds. Greenness was assessed by performing a Green Metrics analysis on two dialkoxyanilines. A comparison was made with literature routes for these compounds starting from a petrochemical substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000463462100050 Publication Date 2019-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159378 Serial 7556  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Janssens, K.; Caen, J. url  doi
openurl 
  Title Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings Type A1 Journal article
  Year 2019 Publication Heritage science Abbreviated Journal  
  Volume 7 Issue 7 Pages 22  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract This study concerns the assessment of a new polyvinyl alcohol–borax/agarose blend hydrogel (PVA–B/AG) tailored for the conservation of ancient Egyptian wall paintings. The increasing problems of deteriorated consolidants affecting ancient wall paintings have attracted the interest of conservation scientists in the last 20 years. The ability of a new blend for removing aged Paraloid® B-72 layers from painted stone and plaster samples has been evaluated. The hydrogel blend was used to expose the aged Paraloid in a controlled manner to six different cleaning system (CS). CS1–CS4 consist of solvents or solvent mixtures; CS5 and CS6 are nanostructured fluids (NSFs). The evaluation of the removal process was carried out by quantitative and qualitative methods, namely, visual examination, 3D microscopy, contact angle and colorimetric measurements and by Fourier transform infra-red spectrometry in reflectance mode. The results showed that the PVA–B/AG blend hydrogel, loaded with specific cleaning systems, was able to remove deteriorated B-72 and allowed to restore the painted surface to a state close to the original one. The PVA–B/AG blend showed good workability, permitting it to be easily cut, shaped, applied and removed. It could also be verified by means of different investigation methods that the blend left no detectable residues. As a final realistic check of the method, the PVA–B/AG hydrogel loaded with the best functioning cleaning system (CS3) was used to remove an aged consolidant layer from an ancient Egyptian wall painting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000463733900001 Publication Date 2019-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes ; Ehab Al-Emam acknowledges the Egyptian Ministry of Higher Education for funding his PhD scholarship. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158879 Serial 5615  
Permanent link to this record
 

 
Author Van Velthoven, N.; Waitschat, S.; Chavan, S.M.; Liu, P.; Smolders, S.; Vercammen, J.; Bueken, B.; Bals, S.; Lillerud, K.P.; Stock, N.; De Vos, D.E. url  doi
openurl 
  Title Single-site metal-organic framework catalysts for the oxidative coupling of arenes via C-H/C-H activation Type A1 Journal article
  Year 2019 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 10 Issue 10 Pages 3616-3622  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000463759100017 Publication Date 2019-02-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 68 Open Access OpenAccess  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no. [720996]. N. V. V., S. S., J. V., B. B. and D. E. D. V. thank the FWO for funding (SB, Aspirant and postdoctoral grants). The electron microscopy work was supported by FWO funding G038116. D. E. D. V. is grateful for KU Leuven support in the frame of the CASAS Metusalem project and a C3 type project. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Johnson Matthey and S. Bennett are gratefully acknowledged for providing Smopex-102. ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:159403 Serial 5259  
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 25 Pages 255302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000464184300001 Publication Date 2019-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 4 Open Access  
  Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:159314 Serial 5215  
Permanent link to this record
 

 
Author Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H. url  doi
openurl 
  Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 10 Pages 1700  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000464338100011 Publication Date 2019-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access OpenAccess  
  Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:159341 Serial 5241  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 14 Pages 143101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000464450200022 Publication Date 2019-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168  
Permanent link to this record
 

 
Author Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Kondrashov, I.I.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D. url  doi
openurl 
  Title Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 14 Pages 6755-6765  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq(-1) we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq(-1). The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000464454400024 Publication Date 2019-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access: Available from 06.09.2019  
  Notes ; The work was supported by the RFBR project 18-29-19113-mk, grant no. 311533 of Academy of Finland, Russian Federation President Program for young scientist MK-3140.2018.2. Also, the reported study was funded by RFBR and Moscow city Government according to the research project no. 19-32-70004. TEM measurements were performed with financial support from the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:159339 Serial 5249  
Permanent link to this record
 

 
Author Scuracchio, P.; Michel, K.H.; Peeters, F.M. doi  openurl
  Title Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from our previous work in which we obtained a system of coupled integrodifferential equations for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here the corresponding hydrodynamic equations, and we study their consequences as a function of temperature and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport coefficients. We calculate these coefficients by means of correlation functions without using the concept of relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal boron nitride, 2H-transition-metal dichalcogenides, and oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000464717300006 Publication Date 2019-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159346 Serial 5225  
Permanent link to this record
 

 
Author Liu, M.; Yi, Y.; Wang, L.; Guo, H.; Bogaerts, A pdf  url
doi  openurl
  Title Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue 3 Pages 275  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Due to the increasing emission of carbon dioxide (CO2), greenhouse effects are becoming more and more severe, causing global climate change. The conversion and utilization of CO2 is one of the possible solutions to reduce CO2 concentrations. This can be accomplished, among other methods, by direct hydrogenation of CO2, producing value-added products. In this review, the progress of mainly the last five years in direct hydrogenation of CO2 to value-added chemicals (e.g., CO, CH4, CH3OH, DME, olefins, and higher hydrocarbons) by heterogeneous catalysis and plasma catalysis is summarized, and research priorities for CO2 hydrogenation are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465012800055 Publication Date 2019-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited Open Access OpenAccess  
  Notes Fundamental Research Funds for the Central Universities of China , DUT18JC42 32249 ; National Natural Science Foundation of China , 21503032 ; PetroChina Innovation Foundation , 2018D-5007-0501 ; Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158094 Serial 5162  
Permanent link to this record
 

 
Author Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J. pdf  doi
openurl 
  Title Scanning transmission electron microscopy under controlled low-pressure atmospheres Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 76-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10(-7) mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2 x 10(-10 )mbar, and can be varied up to 10(-6) mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O(2 )and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two 0 atoms per molecule. H(2 )and N-2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465021000010 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165937 Serial 6321  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A. pdf  url
doi  openurl
  Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 95-104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465021000013 Publication Date 2018-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:160213 Serial 5242  
Permanent link to this record
 

 
Author van den Bos, K.H.W.; Janssens, L.; De Backer, A.; Nellist, P.D.; Van Aert, S. url  doi
openurl 
  Title The atomic lensing model: new opportunities for atom-by-atom metrology of heterogeneous nanomaterials Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue Pages 155  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The atomic lensing model has been proposed as a promising method facilitating atom-counting in heterogeneous nanocrystals [1]. Here, image simulations will validate the model, which describes dynamical diffraction as a superposition of individual atoms focussing the incident electrons. It will be demonstrated that the model is reliable in the annular dark field regime for crystals having columns containing dozens of atoms. By using the principles of statistical detection theory, it will be shown that this model gives new opportunities for detecting compositional differences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465021000020 Publication Date 2018-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N, G.0502.18N and WO.010.16N), and by personal grants to K.H.W. van den Bos and A. De Backer. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:155721 Serial 5074  
Permanent link to this record
 

 
Author Dhayalan, S.K.; Nuytten, T.; Pourtois, G.; Simoen, E.; Pezzoli, F.; Cinquanta, E.; Bonera, E.; Loo, R.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Vandervorst, W. pdf  doi
openurl 
  Title Insights into the C Distribution in Si:C/Si:C:P and the Annealing Behavior of Si:C Layers Type A1 Journal article
  Year 2019 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 8 Issue 4 Pages P209-P216  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Si:C and Si:C:P alloys are potential candidates for source-drain stressor applications in n-type Fin Field Effect Transistors (FinFETs). Increasing the C content to achieve high strain results in the arrangement of C atoms as third nearest neighbors (3nn) in the Si: C lattice. During thermal annealing, the presence of C atoms as 3nn may promote clustering at the interstitial sites, causing loss of stress. The concentration of C atoms as 3nn is reduced by the incorporation of a small amount of Ge atoms during the growth, whereas in-situ P doping does not influence this 3nn distribution [J Solid State Sci. Technol vol 6, p 755, 2017]. Small amounts of Ge are provided during low temperature selective epitaxial growth scheme, which are based on cyclic deposition and etching (CDE). In this work, we aim to provide physical insights into the aforementioned phenomena, to understand the behavior of 3nn C atoms and the types of defects that are formed in the annealed Si: C films. Using ab-initio simulations, the Ge-C interaction in the Si matrix is investigated and this insight is used to explain how the Ge incorporation leads to a reduced 3nn distribution of the C atoms. The interaction between C and P in the Si: C: P films is also investigated to explain why the P incorporation has not led to a reduction in the 3nn distribution. We then report on the Raman characterization of Si: C layers subjected to post epi annealing. As the penetration depth of the laser is dependent on the wavelength, Raman measurements at two different wavelengths enable us to probe the depth distribution of 3nn C atoms after applying different annealing conditions. We observed a homogeneous loss in 3nn C throughout the layer. Whereas in the kinematic modeling of high resolution X-ray diffraction spectra, a gradient in the substitutional C loss was observed close to the epitaxial layer/substrate interface. This gradient can be due to the out diffusion of C atoms into the Si substrate or to the formation of interstitial C clusters, which cannot be distinguished in HR-XRD. Deep Level Transient Spectroscopy indicated that the prominent out-diffusing species was interstitial CO complex while the interstitial C defects were also prevalent in the epi layer. (c) 2019 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465069200001 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.787 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.787  
  Call Number UA @ admin @ c:irua:160399 Serial 5275  
Permanent link to this record
 

 
Author Torre, I.; de Castro, L.V.; Van Duppen, B.; Barcons Ruiz, D.; Peeters, F.M.; Koppens, F.H.L.; Polini, M. url  doi
openurl 
  Title Acoustic plasmons at the crossover between the collisionless and hydrodynamic regimes in two-dimensional electron liquids Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144307  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentumconserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity collisions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe, identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465160000003 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work has been sponsored by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 “Graphene Core2” and via the European Research Council (ERC) Grant Agreement No. 786285. B.V.D. is supported by a post-doctoral fellowship of the Flemish Science Foundation (FWO-Vl). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grant Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. F.M.P. and L.V.d.C. were supported by the Methusalem Program of the Flemish Government. We thank Niels Hesp and Hanan Hertzig Sheinfux for useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159333 Serial 5193  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Multicomponent screening and superfluidity in gapped electron-hole double bilayer graphene with realistic bands Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has recently been reported in double electron-hole bilayer graphene. The multiband nature of the bilayers is important because of the very small band gaps between conduction and valence bands. The long-range nature of the superfluid pairing interaction means that screening must be fully taken into account. We have carried out a systematic mean-field investigation that includes (i) contributions to screening from both intraband and interband excitations, (ii) the low-energy band structure of bilayer graphene with its small band gap and flattened Mexican-hat-like low-energy bands, (iii) the large density of states at the bottom of the bands, (iv) electron-hole pairing in the multibands, and (v) electron-hole pair transfers between the conduction and valence band condensates. We find that the superfluidity strongly modifies the intraband contributions to the screening, but that the interband contributions are unaffected. Unexpectedly, a net effect of the screening is to suppress Josephson-like pair transfers and to confine the superfluid pairing entirely to the conduction-band condensate even for very small band gaps, making the system behave similarly to a one-band superfluid.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465160000004 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem Foundation. We thank Mohammad Zarenia and Alfredo VargasParedes for useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159332 Serial 5221  
Permanent link to this record
 

 
Author Gu, J.-G.; Zhang, Y.; Gao, M.-X.; Wang, H.-Y.; Zhang, Q.-Z.; Yi, L.; Jiang, W. pdf  doi
openurl 
  Title Enhancement of surface discharge in catalyst pores in dielectric barrier discharges Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 15 Pages 153303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The generation of high-density plasmas on the surface of porous catalysts is very important for plasma catalysis, as it determines the active surface of the catalyst that is available for the reaction. In this work, we investigate the mechanism of surface and volume plasma streamer formation and propagation near micro-sized pores in dielectric barrier discharges operating in air at atmospheric pressure. A two-dimensional particle-in-cell/ Monte Carlo collision model is used to model the individual kinetic behavior of plasma species. Our calculations indicate that the surface discharge is enhanced on the surface of the catalyst pores compared with the microdischarge inside the catalyst pores. The reason is that the surface ionization wave induces surface charging along the catalyst pore sidewalls, leading to a strong electric field along the pore sidewalls, which in turn further enhances the surface discharge. Therefore, highly concentrated reactive species occur on the surfaces of the catalyst pores, indicating high-density plasmas on the surface of porous catalysts. Indeed, the maximum electron impact excitation and ionization rates occur on the pore surface, indicating the more pronounced production of excited state and electron-ion pairs on the pore surface than inside the pore, which may profoundly affect the plasma catalytic process. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465441200022 Publication Date 2019-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:160397 Serial 5273  
Permanent link to this record
 

 
Author Kim, Y.; Che, F.; Jo, J.W.; Choi, J.; de Arquer, F.P.G.; Voznyy, O.; Sun, B.; Kim, J.; Choi, M.-J.; Quintero-Bermudez, R.; Fan, F.; Tan, C.S.; Bladt, E.; Walters, G.; Proppe, A.H.; Zou, C.; Yuan, H.; Bals, S.; Hofkens, J.; Roeffaers, M.B.J.; Hoogland, S.; Sargent, E.H. pdf  url
doi  openurl
  Title A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics Type A1 Journal article
  Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 31 Issue 31 Pages 1805580  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (approximate to 47 meV) and Urbach tail (approximate to 29 meV). This approach provides a approximate to 50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a approximate to 70% external quantum efficiency at their excitonic peak.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465600000001 Publication Date 2019-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 74 Open Access OpenAccess  
  Notes ; Y.K., F.C., J.W.J., and J.C. contributed equally. This work was supported by King Abdullah University of Science and Technology (KAUST, Office of Sponsored Research (OSR), Award No. OSR-2017-CPF-3325) and Ontario Research Fund-Research Excellence program (ORF7-Ministry of Research and Innovation, Ontario Research Fund-Research Excellence Round 7). E.B. gratefully acknowledges financial support by the Research Foundation-Flanders (FWO Vlaanderen). Y.K. received financial support from the DGIST R&D Programs of the Ministry of Science, ICT & Future Planning of Korea (18-ET-01). M.B.J.R. and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grants nr ZW15_09-GOH6316 and G.098319N) and the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04). H.Y. acknowledges the Research Foundation-Flanders (FWO) for a postdoctoral fellowship. The authors thank L. Levina, R. Wolowiec, D. Kopilovic, and E. Palmiano for their technical help over the course of this research. ; Approved Most recent IF: 19.791  
  Call Number UA @ admin @ c:irua:160392 Serial 5239  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rodriguez, J.A.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 26 Pages 265502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000465887100001 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216; and the partial support of DGAPA-UNAM project IN114817-3. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; DGTIC-UNAM under project LANCAD-UNAM-DGTIC-150, and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:160216 Serial 5236  
Permanent link to this record
 

 
Author Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods Type A1 Journal article
  Year 2019 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 13 Issue 13 Pages 4424-4435  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466052900067 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 100 Open Access OpenAccess  
  Notes ; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:160417 Serial 5246  
Permanent link to this record
 

 
Author Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. pdf  url
doi  openurl
  Title Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal Journal of Solid State Chemistry  
  Volume 273 Issue Pages 175-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466261100026 Publication Date 2019-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no  
  Call Number EMAT @ emat @c:irua:166445 Serial 6346  
Permanent link to this record
 

 
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J. url  doi
openurl 
  Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 201 Issue Pages 81-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466343800009 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153  
Permanent link to this record
 

 
Author Monico, L.; Sorace, L.; Cotte, M.; de Nolf, W.; Janssens, K.; Romani, A.; Miliani, C. url  doi
openurl 
  Title Disclosing the binding medium effects and the pigment solubility in the (photo)reduction process of chrome yellows (PbCrO4/PbCr1-xSxO4) Type A1 Journal article
  Year 2019 Publication ACS Omega Abbreviated Journal  
  Volume 4 Issue 4 Pages 6607-6619  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The darkening due to chemical alteration of chrome yellows (PbCrO4/PbCr1-xSxO4) is a phenomenon threatening a large number of 19th-20th century paintings, including the Amsterdam Sunflowers by Vincent van Gogh. Our earlier studies have proven that the alteration is due to a Cr(VI) -> Cr(III) reduction with Cr(V)-species that are formed as long-lived intermediates and that bCr(1-x)S(x)O(4) (0 < x <= 0.8) types undergo reduction more readily than monoclinic, S-free, PbCrO4. In this context, there is still lack of knowledge about the effects of the chemical properties of the binding medium (i.e., chemical composition and drying process) and the solubility of chrome yellows on the overall reduction pathways. Here, we study a series of naturally and photochemically aged mock-up paints prepared by mixing chrome yellow powders (PbCrO4/PbCr0.2S0.8O4) with either linseed oil or a water-based acrylic emulsion as the binding medium. Equivalent paints made up of the highly soluble K2CrO4 were also investigated and used as benchmarks to provide a more in-depth understanding of the influence of the solubility on the chromate reduction pathways in the two different binders. A combination of synchrotron radiation-based Cr K-edge X-ray absorption near edge structure (XANES), electron paramagnetic resonance (EPR), and UV-Visible spectroscopy measurements shows that: (1) the Cr(VI) reduction results from the interaction between the pigment and the binder; (2) the process is more significant in oil, giving rise to Cr(V)- and Cr(III)-species as well as oxidized organic compounds; (3) the lightfastness of the chrome yellow pigment is enhanced in the acrylic binder; and (4) the tendency toward chromium reduction increases with increasing solubility of the pigment. Based on our findings, we propose a scheme for the mechanism of the (photo)reduction process of chrome yellows in the oil and acrylic binder. Overall, our results provide new insights into the factors driving the degradation of lead chromate-based paints in artworks and contribute to the development of strategies for preserving them over time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466552500057 Publication Date 2019-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes ; The research was financially supported by the European research project IPERION-CH, funded by the European Commission, H2020-INFRAIA-2014-2015 (grant agreement n. 654028), and by the project AMIS, within the program Dipartimenti di Eccellenza 2018-2022, funded by MIUR and University of Perugia. The University of Perugia is also acknowledged for financial support under the program “Ricerca di Base 2017”. L.S. acknowledges the financial support of Ente CRF. For the beamtime grants received, we thank the ESRF (experiment no. HG64 and in-house beamtimes). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160416 Serial 5577  
Permanent link to this record
 

 
Author Vanderkerckhove, T.G.L.; Kerckhof, F.-M.; De Mulder, C.; Vlaeminck, S.E.; Boon, N. pdf  url
doi  openurl
  Title Determining stoichiometry and kinetics of two thermophilic nitrifying communities as a crucial step in the development of thermophilic nitrogen removal Type A1 Journal article
  Year 2019 Publication Water research Abbreviated Journal  
  Volume 156 Issue Pages 34-45  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrification and denitrification, the key biological processes for thermophilic nitrogen removal, have separately been established in bioreactors at 50 °C. A well-characterized set of kinetic parameters is essential to integrate these processes while safeguarding the autotrophs performing nitrification. Knowledge on thermophilic nitrifying kinetics is restricted to isolated or highly enriched batch cultures, which do not represent bioreactor conditions. This study characterized the stoichiometry and kinetics of two thermophilic (50 °C) nitrifying communities. The most abundant ammonia oxidizing archaea (AOA) were related to the Nitrososphaera genus, clustering relatively far from known species Nitrososphaera gargensis (95.5% 16S rRNA gene sequence identity). The most abundant nitrite oxidizing bacteria (NOB) were related to Nitrospira calida (97% 16S rRNA gene sequence identity). The nitrification biomass yield was 0.200.24 g VSS g−1 N, resulting mainly from a high AOA yield (0.160.20 g VSS g−1 N), which was reflected in a high AOA abundance in the community (5776%) compared to NOB (511%). Batch-wise determination of decay rates (AOA: 0.230.29 d−1; NOB: 0.320.43 d−1) rendered an overestimation compared to in situ estimations of overall decay rate (0.0260.078 d−1). Possibly, the inactivation rate rather than the actual decay rate was determined in batch experiments. Maximum growth rates of AOA and NOB were 0.120.15 d−1 and 0.130.33 d−1 respectively. NOB were susceptible to nitrite, opening up opportunities for shortcut nitrogen removal. However, NOB had a similar growth rate and oxygen affinity (0.150.55 mg O2 L−1) as AOA and were resilient towards free ammonia (IC50 > 16 mg NH3-N L−1). This might complicate NOB outselection using common practices to establish shortcut nitrogen removal (SRT control; aeration control; free ammonia shocks). Overall, the obtained insights can assist in integrating thermophilic conversions and facilitate single-sludge nitrification/denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466618400004 Publication Date 2019-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:158226 Serial 7798  
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
  Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.  
  Volume 4 Issue 14 Pages 813-820  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000466846700004 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: