|
Record |
Links |
|
Author |
Gonzalez-Rubio, G.; Kumar, V.; Llombart, P.; Diaz-Nunez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Pena-Rodriguez, O.; Noya, E.G.; MacDowell, L.G.; Guerrero-Martinez, A.; Liz-Marzan, L.M. |
|
|
Title |
Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
ACS nano |
Abbreviated Journal |
Acs Nano |
|
|
Volume |
13 |
Issue |
13 |
Pages |
4424-4435 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
One of the major difficulties hindering the widespread application of colloidal anisotropic plasmonic nanoparticles is the limited robustness and reproducibility of multistep synthetic methods. We demonstrate herein that the reproducibility and reliability of colloidal gold nanorod (AuNR) synthesis can be greatly improved by disconnecting the symmetry-breaking event from the seeded growth process. We have used a modified silver-assisted seeded growth method in the presence of the surfactant hexadecyltrimethylammonium bromide and n-decanol as a co-surfactant to prepare small AuNRs in high yield, which were then used as seeds for the growth of high quality AuNR colloids. Whereas the use of n-decanol provides a more-rigid micellar system, the growth on anisotropic seeds avoids sources of irreproducibility during the symmetry breaking step, yielding uniform AuNR colloids with narrow plasmon bands, ranging from 600 to 1270 nm, and allowing the fine-tuning of the final dimensions. This method provides a robust route for the preparation of high quality AuNR colloids with tunable morphology, size, and optical response in a reproducible and scalable manner. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000466052900067 |
Publication Date |
2019-04-02 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
13.942 |
Times cited |
100 |
Open Access |
OpenAccess |
|
|
Notes |
; This work has been funded by the Spanish MINECO (grant nos. FIS2017-89361-C3-2-P and MAT2017-86659-R), the Madrid Regional Government (grant no. P2018/NMT-4389) and the Complutense University of Madrid (grant no. PR75/18-21616). Funding is acknowledged from the European Commission (grant no. EUSMI 731019). G.G.-R. acknowledges receipt of FPI Fellowship from the Spanish MINECO. E.B. and T.A. acknowledge postdoctoral grants from the Research Foundation Flanders (FWO). The authors are indebted to Profs. Justin Gooding, Watson Loh, Nicholas Kotov, Deqing Zhang, Mihaela Delcea, Maurizio Prato, and Krishna Ganesh, for providing milli-Q water samples. ; |
Approved |
Most recent IF: 13.942 |
|
|
Call Number |
UA @ admin @ c:irua:160417 |
Serial |
5246 |
|
Permanent link to this record |