toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Kong, X.; Li, L.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
  Year (down) 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 25 Pages 255302  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464184300001 Publication Date 2019-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 5 Open Access  
  Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:159314 Serial 5215  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: