|
Record |
Links |
|
Author |
Yuan, S.; Pu, Z.; Zhou, H.; Yu, J.; Amiinu, I.S.; Zhu, J.; Liang, Q.; Yang, J.; He, D.; Hu, Z.; Van Tendeloo, G.; Mu, S. |
|
|
Title |
A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Nano energy |
Abbreviated Journal |
Nano Energy |
|
|
Volume |
59 |
Issue |
59 |
Pages |
472-480 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The development of a stable, efficient and economic catalyst for hydrogen evolution reaction (HER) of water splitting is one of the most hopeful approaches to confront the environmental and energy crisis. A two-step method is employed to obtain metal clusters (Ru, N, Pd etc.) combining single cobalt atoms anchored on nitrogen-doped carbon (Ru/Pt/Pd@Co-SAs/N-C). Based on the synergistic effect between Ru clusters and single cobalt atoms, Ru@Co-SAs/N-C exhibits an outstanding HER electrocatalytic activity. Specifically, Ru@Co-SAs/N-C only needs 7 mV overpotential at 10 mA cm(-2) in 1 M KOH solution, which is much better than commercial 20 wt% PVC (40 mV) catalyst. Density functional theory (DFT) calculations further reveal the synergy effect between surface Ru nanoclusters and Co-SAs/N-C toward hydrogen adsorption for HER. Additionally, Ru@CoSAs/N-C also exhibits excellent catalytic ability and durability under acidic and neutral media. The present study opens a new avenue towards the design of metal clusters/single cobalt atoms heterostructures with outstanding performance toward HER and beyond. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000463032200051 |
Publication Date |
2019-02-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2211-2855 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.343 |
Times cited |
33 |
Open Access |
Not_Open_Access: Available from 01.11.2019
|
|
|
Notes |
; S.Y., Z.P. and H.Z. contributed equally to this work. This work was financed by the National Natural Science Foundation of China (Grant No. 51372186, 51672204, 51701146) and the Fundamental Research Funds for the Central Universities (WUT: 2017III055, 2018III039GX, 2018IVA095). We express heartfelt thanks to Prof. Gaoke Zhang for the supply of computational resources in the School of Resources and Environmental Engineering, Wuhan University of Technology. ; |
Approved |
Most recent IF: 12.343 |
|
|
Call Number |
UA @ admin @ c:irua:159330 |
Serial |
5240 |
|
Permanent link to this record |