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Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and
scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic
regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-
dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentum-
conserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity colli-
sions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion
and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe,
identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.
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I. INTRODUCTION

In electron systems a collective charge mode exists at
frequency above the threshold for intra-band electron-hole
excitations. This mode is called “plasmon” [1,2] and is par-
ticularly useful for technological applications in the case of
two-dimensional (2D) electron systems. In this case, indeed,
plasmons are gapless modes typically falling in the mid-
infrared [3–5] or terahertz (THz) [6–8] frequency ranges.

In recent years plasmons in 2D materials [9–11] such as
graphene have attracted a great deal of attention because of
their ability to confine light on length scales much shorter than
the free-space wavelength [8,12], their long lifetimes [5,13],
and their gate tunability [3–5,14].

Due to the long-range nature of the bare electron-electron
(e-e) interaction, plasmons in 2D materials on a dielectric
substrate have a long-wavelength “unscreened” dispersion of
the form [1,2] ω ∝ √

q, where ω is the angular frequency
and q is the in-plane wave vector. Conversely, if the long-
range part of the e-e interaction is screened by, e.g., a nearby
conducting gate, the plasmon dispersion is modified into an
acoustic one (see, e.g., Ref. [15]), ω ∝ q.

Acoustic plasmons (APs) [7,8,15–17] are particularly in-
teresting because they can achieve larger mode confinement
with respect to their unscreened counterpart. This happens
for two reasons. First, an AP is more confined in the vertical
direction due to the presence of the metallic gate [12], with
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the largest part of the electromagnetic energy density being
localized between the gate and the 2D material. Second,
due to the screening of the long-range part of the Coulomb
interaction, APs are softer (because the restoring force is
reduced) and carry high values of q, for a given value of ω.
This allows the study of interesting quantum nonlocal effects
[8], which become important when the plasmon dispersion
gets close to the boundary of the intraband electron-hole con-
tinuum located at ω = v∗

Fq, v∗
F being the quasiparticle velocity.

With the term “quasiparticle” velocity we mean the Fermi
velocity as dressed by electron-electron (e-e) interactions
[1,2,18]. The same jargon and notation will be used below
for the Drude weight D∗, the density of states at the Fermi
energy N ∗, etc. The same quantities without the “∗” symbol,
e.g., vF, D, N , etc, will denote instead the noninteracting
counterparts.

In 2D conducting materials of extremely high electronic
quality, such as graphene encapsulated in hexagonal boron
nitride [19], e-e interactions induce, in the intermediate-to-
high-temperature regime, the so-called hydrodynamic trans-
port regime. In this regime, e-e collisions are so frequent
that they can establish a local thermal quasiequilibrium. This
happens when the e-e mean-free path �ee ≡ v∗

Fτee (here τee is
the e-e scattering time [20–24]) is much shorter than both
the mean-free path for momentum-relaxing collisions with
phonons or impurities � ≡ v∗

Fτ and the characteristic wave-
length [25,26] 1/q of external perturbations. In the ac regime,
we should also require [25–27] the angular frequency of the
perturbation ω to be much smaller than the e-e scattering rate
1/τee. Transport signatures of hydrodynamic behavior have
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FIG. 1. Sketch of the q-ω plane showing the relevant frequency
and length scales for the problem at hand, and the plasmon dispersion
(red and orange lines) for two different values of the screening
parameter � defined in Eq. (9). Red line: � � 1. Orange line:
� < 1. The blue solid line is the electron dispersion ω = vFq while
the blue dashed line is the sound dispersion ω = vFq/

√
2 (ignoring

here many-body corrections). Different regimes of linear response
are highlighted. In the hydrodynamic regime (blue shaded region) the
Navier-Stokes equation (1) is applicable. In the overdamped regime
(magenta shaded region), Eq. (1) is still applicable but plasmons are
strongly damped. In the viscoelastic regime (green shaded region)
Eq. (1) can still be applied considering a frequency-dependent com-
plex viscosity [27,34].

been found in different high-quality materials like single- and
bilayer graphene [26,28–30], GaAs/AlGaAs heterostructures
[31,32], and PdCoO2 [33].

The rate γ ≡ 1/τ of momentum nonconserving collisions
with impurities and phonons and the e-e scattering rate γee ≡
1/τee define several regimes in the q-ω plane, which are
sketched in Fig. 1.

In the hydrodynamic regime [35] and at the level
of linear-response theory, the electron liquid can be de-
scribed by the continuity equation iωn(r, ω) = ∇ · J(r, ω),
n(r, ω) being the deviation of the particle density from
its equilibrium value n̄ and J(r, ω) the particle current,
and the Navier-Stokes equation [25–27] (see Appendix B

for a full derivation emphasizing the relation with kinetic
theory)

−iωJ(r, ω) = −γ J(r, ω) + ν∗∇2J(r, ω)

− D∗

D

[
en̄

m
E(r, ω) + 1

n̄mK∗ ∇n(r, ω)

]
. (1)

Here, E(r, ω) is the electric field, e is the elementary
charge, m ≡ h̄kF/vF is the bare effective mass, kF being the
Fermi wave vector, K∗ = [n̄∂P/∂ n̄]−1 is the compressibility
[1,2,36], P = P(n̄) being the pressure, ν∗ is the kinematic
viscosity [25–27,35], D∗ (D) is the Drude weight of the
interacting [37,38] (noninteracting) electron system.

In this work, we identify signatures of the transition be-
tween the hydrodynamic (ω � γee) and collisionless (ω �
γee) regimes in the dispersion and, most importantly, the
damping of AP modes. In the case of single-layer graphene
(SLG) at room temperature, for example, τee ≈ 0.15 ps at
typical carrier densities [24] (n̄ = 1.0 × 1012 cm−2, say) and
the crossover is expected to occur in the THz range.

Our work is structured as follows. In Secs. II and III,
we introduce the two main ingredients of our theory: the
nonlocal longitudinal conductivity σL(q, ω)—Eq. (2)—and
the effective electron-electron interaction potential vq,ω, both
calculated in the long-wavelength limit. Then, in Sec. IV,
we find AP modes, which are described by an equation of
the form qp = qp(ω) for every real frequency ω. Here qp is
a complex wave vector qp = Re(qp) + iIm(qp), which gives
access to both dispersion and damping. Section V is dedicated
to the analysis of the coupling of these modes to a near-
field probe. Finally, Sec. VI summarizes our main findings.
Appendices A–E contain a wealth of useful technical details.

II. THE NONLOCAL CONDUCTIVITY FROM LANDAU
KINETIC THEORY

The response of a 2D electron liquid to an external scalar
potential can be calculated using Landau kinetic equation
[1,2] for a normal Fermi liquid, which governs the response
of the quasiparticle distribution function to slowly varying
electromagnetic fields [27,34]. Its use is justified when the
excitation wavelength is sufficiently long compared to the
inverse of the Fermi wave vector kF, and when the excitation
energy h̄ω is sufficiently small compared to the Fermi energy
EF, and to the energy of the lowest interband excitation Eg.

As detailed in Appendices A–C, the linearized kinetic
equation can be solved by using a simple ansatz [27]. After
lengthy but straightforward algebra, we find the following
expression for the longitudinal nonlocal conductivity [39],
which controls the current response to an electric field parallel
to q:

σL(q, ω) = iD∗/π

ω + iγ + ω+iγ+iγee

2
D∗
D

vF
v∗

F

[√
1 − ( v∗

Fq
ω+iγ+iγee

)2 − 1
] − 1

2
D∗
D

K
K∗

v2
Fq2

ω

. (2)
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Here, D = πe2n̄/m (K = N /n̄2) is the Drude weight (com-
pressibility) of the noninteracting system, N = Nf m/(2π h̄2)
being the density of states at the Fermi energy and Nf the
number of fermion flavors (e.g., Nf = 4 for graphene). In the
Landau theory of Fermi liquids [1,2], K/K∗ = (v∗

F/vF)(1 +
F s

0 ) and D∗/D = (v∗
F/vF)(1 + F s

1 ), where F s
0(1) is the spin-

symmetric dimensionless Landau parameter in the s (p) angu-
lar momentum channel [1,2,40]. The many-body corrections
v∗

F/vF, K∗/K , and D∗/D can be calculated from approximate
theories [8,18,36,37] and are fundamental for a quantita-
tive interpretation of experimental data since, for example,
v∗

F/vF ≈ 1.3 [18], K∗/K ≈ 0.8 [8], and D∗/D ≈ 1.5 [37] in
SLG at densities on the order of 1012 cm−2.

In deriving Eq. (2) we made the following assumptions.
(i) The momentum-conserving and the momentum-relaxing
collisions are described by one parameter each, i.e., differ-
ences between the relaxation times of the different angular
components of the distribution function [41,42] and the differ-
ence between τee and the viscosity time τv [24] are neglected.
(ii) Only the zeroth- and first-order, spin symmetric, Landau
parameters F s

0(1) are considered. Higher-angular-momentum
Landau parameters F s

l with l � 2 are typically smaller, unless
the system is highly correlated. We used these assumptions
to derive the simplest yet highly-nontrivial model for the
nonlocal longitudinal conductivity. However, the technique
we used in our derivation, based on analytical inversion of
tridiagonal matrices [43], easily allows the introduction of
different scattering rates for the different harmonics of the
distribution function [41,42] as well as higher-order Landau
parameters.

Equation (2) is the first important result of this work
because, despite its simplicity, it (i) embodies a wealth of
physical effects, including many-body effects beyond the
random phase approximation (RPA), (ii) allows us to span
the whole frequency range, from the hydrodynamic to the
collisionless regime, and (iii) is valid with no assumptions
on the relative values of the parameters, other than the ones
mentioned previously for the applicability of Landau kinetic
equation. In what follows, we will anyway assume that γee �
γ because the hydrodynamic regime is relevant only in this
case.

We now look at four special limits of Eq. (2). (i) We first
set q = 0, i.e., we consider the local conductivity. In this case,
Eq. (2) reduces to a Drude-like formula with a renormalized
Drude weight D∗ and a damping rate γ induced solely by
momentum-nonconserving collisions. The e-e collision rate
γee appears at order q2. Note that e-e interactions fully dis-
appear from σL(0, ω) in a Galilean invariant electron system
where D∗ = D because in this case [1,2] v∗

F/vF = 1/(1 + F s
1 ).

(ii) Second, expanding to second order in |v∗
Fq/(ω + iγ +

iγee )| the square root in the denominator of Eq. (2) and taking
the limit ω � γee, we obtain the hydrodynamic nonlocal
conductivity [24]

σ h
L (q, ω) = iD∗/π

ω + iγ + q2
(
iν∗ − D∗

n̄mDK∗ω

) , (3)

where ν∗ ≡ D∗v∗
FvF/[4D(γee + γ )]. Ignoring many-body

renormalizations, our result for ν∗ reduces to the “classical”

formula for the viscosity of an electron gas [27,44], while
for Galileian invariant systems it reduces to the expression
given in Ref. [34] with F s

2 = 0. The quantity σ h
L (q, ω) can be

obtained directly by using Eq. (1) coupled to the continuity
equation. (iii) Third, if both many-body renormalizations and
e-e collisions are neglected we recover the response function
used in Ref. [45] to discuss the effect of diffusion (i.e.,
electron-impurity collisions) on 2D unscreened plasmons. (iv)
Finally, if the scattering rates γ and γee are both sent to
zero, the long-wavelength (q � kF) limit of the collisionless
conductivity of a 2D electron system [46] with parameters
renormalized by e-e interactions is recovered.

III. THE SCREENED ELECTRON-ELECTRON
INTERACTION

The dispersion of plasmons in a material depends also on
the interaction potential vq,ω between charges in the material
itself. This quantity relates the Fourier transform of n(q, ω)
to the Fourier transform of the induced (i.e., Hartree) scalar
potential Vind(q, ω), i.e., Vind(q, ω) = vq,ωn(q, ω). In 2D ma-
terials the interaction potential is strongly affected by the
presence of nearby dielectrics or conductors. The interaction
potential for generic layered structures can be easily calcu-
lated [7,47]. For example, for a graphene sheet encapsulated
between hBN slabs of different thickness and in the presence
of a metallic gate, such a potential has been calculated in
Ref. [7]. For low frequencies (i.e., low compared to all, e.g.,
phonon, features in the dielectric functions of the nearby
dielectrics) and long wavelengths (i.e., for q much smaller
than the inverse of the dielectric thickness), vq,ω can be safely
replaced by its limit vq,ω ≈ limq,ω→0 vq,ω ≡ e2/C, C being
the capacitance per unit area of the structure. The reasoning
behind this approximation is as follows. The interaction po-
tential between two electrons in a 2D system is

vq = e2G(q, 0, 0), (4)

where G(q, z, z′) is the electrostatic Green function satisfying

q2ε‖(z)G(q, z, z′) − ∂z[ε⊥(z)∂zG(q, z, z′)] = 4πδ(z − z′),

(5)

where z = 0 is the plane where electrons roam, and ε‖ (ε⊥) is
the in-plane (out-of plane) dielectric constant of the dielectric
environment. This equation must be supplemented by the
boundary conditions at the metallic gate, i.e.,

qG(q, z = −d+, z′)
ε⊥(z = −d+)∂zG(q, z = −d+, z′)

= Z. (6)

Here, Z is the dimensionless impedance of the metallic gate
(Z = 0 for a perfect conductor). In presence of screening by
nearby conductors, the electrostatic Green function converges
to a finite limit in the long-wavelength limit. It is therefore
meaningful to define a capacitance per unit area

C ≡ lim
q→0

1

G(q, 0, 0)
. (7)

If we consider a structure made of a perfectly conducting gate
parallel to the 2D electron system and separated along the ẑ
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FIG. 2. (a) Screening parameter � as a function of elec-
tronic density n and spacer thickness d for a single-layer
graphene/hBN/metal heterostructure like the one used in Ref. [8].
Results in this figure have been obtained by setting ε̄zz = 3.5 and
Z = 0. Contour lines have been drawn for � = 0.25 (blue), 0.5 (or-
ange), and 0.25 (green). (b) Same as in (a) but for bilayer graphene.

direction by a dielectric spacer of thickness d and dielectric
tensor ε̄, the capacitance per unit area is C = ε̄zz/(4πd ),
where ε̄zz denotes the tensor component along the ẑ direction.
For all realistic experimental geometries [7,8] using, e.g.,
graphene encapsulated in hBN, the plasmon wavelength is
much longer than the thickness of the whole device and,
therefore, the replacement vq,ω → e2/C, i.e. the so-called
local capacitance approximation (LCA), is fully justified in
the THz regime where the hydrodynamic-ballistic crossover
takes place. All results reported in Figs. 3 and 4 refer to SLG
encapsulated in hBN.

IV. ACOUSTIC PLASMONS VELOCITY AND DAMPING

Mathematically, plasmons are zeros of the longitudinal
dielectric function [1,2] εL(q, ω) of the 2D electron system,
εL(q, ω) = 1 + iq2vq,ωσL(q, ω)/(e2ω). Using the LCA the
latter becomes

εL(q, ω) = 1 − �−1 (−i)πq2v2
FσL(q, ω)

2ωD , (8)

where

� = C

e2N , (9)

is a dimensionless parameter that characterizes how much
the e-e interaction is screened by the nearby dielectric
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FIG. 3. AP phase velocity normalized to the Fermi velocity
(a) and AP damping, normalized to the extrinsic damping γ , (b) as
functions of the frequency f = ω/(2π ), for different values of the
screening parameter: � = 0.25 (blue), 0.5 (orange), and 2 (green).
Results in this figure have been obtained by setting γ = 1012 s−1,
γee = 1013 s−1, and neglecting, for the sake of simplicity, many-
body renormalizations by setting v∗

F/vF = K∗/K = D∗/D = 1. For
each value of �, the solid line denotes the result of the solution
of εL(q, ω) = 0, while the dashed (dash-dotted) line represents the
asymptotic collisionless (hydrodynamic) result. The vertical black
lines mark the frequency 2π f = γee around which the crossover
occurs.

environment. This is the most important parameter of our
theory since its value determines whether or not the crossover
between the collisionless and hydrodynamic regimes is clearly
discernible or not. In Fig. 2, we show its value as a function
of density and gate distance for an heterostructure made of
graphene separated from a metal gate by an hBN slab of
thickness d . It is evident that SLG allows to reach larger
values of � with respect to bilayer graphene thanks to its
smaller effective mass, especially at low densities.

The plasmon equation εL(q, ω) = 0 with εL(q, ω) as in
Eq. (8) can be solved for the plasmon wave vector qp. We
find qp(ω) = (ω/Sω )

√
1 + 2iω/ω, where Sω and ω are

real functions of the frequency representing the velocity and
the damping of the mode respectively. These two functions
can be calculated analytically (see Appendix D) and the
result is shown in Fig. 3. We are now interested in the
asymptotic behavior of Sω and ω for ω � γee (collision-
less limit) and ω � γee (hydrodynamic limit). In the former,
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we find

Sc = vF(�−1 + K
K∗ )√√√√ (4Dv∗

F − 2D∗vF)(�−1 + K
K∗ ) − D∗v∗

F

2D∗v∗
F

[
1 +

√
1 − 16v∗

FD(v∗
FD − vFD∗)(�−1 + K

K∗ )2

[(4Dv∗
F − 2D∗vF)(�−1 + K

K∗ ) − D∗v∗
F]2

] , (10)

c =
γ

(2Dv∗
F − D∗vF)S2

h − 2(Dv∗
F − D∗vF)S2

c

v3
FD∗ + γee

S2
c − S2

h

v2
F

(4Dv∗
F − 2D∗vF)(�−1 + K

K∗ ) − D∗v∗
F

2DvF

√
1 − 16v∗

FD(v∗
FD − vFD∗)(�−1 + K

K∗ )2

[(4Dv∗
F − 2D∗vF)(�−1 + K

K∗ ) − D∗v∗
F]2

, (11)

while in the latter, we find

Sh = vF

√
D∗(�−1 + K

K∗
)

2D , (12)

h = γ

2
+ D∗vFv

∗
Fω

2

8D(γ + γee )S2
h

. (13)

Equation (10)–(13) are the second important result of this
work. In particular, Eqs. (12) and (13) can be obtained by
directly solving Eq. (8) with the conductivity given in Eq. (3)
and ignoring terms of order higher than one in ω/γee.

From these results one can easily understand why achiev-
ing high values of the screening parameter � is of pivotal
importance to observe the crossover from the collisionless to
the hydrodynamic regime. Indeed, in the limit � → 0, we
have Sh = Sc = vF

√
D∗/(2D�) and h = c = γ /2. There-

fore, for small values of �, no crossover can be observed as
Sh = Sc and h = c, and the damping of the AP mode is
completely controlled by momentum-relaxing collision, with
γee dropping out of the problem.

On the other hand, for � � 1, the velocities in the
two regimes converge to distinct values. The velocity of
the AP mode in the collisionless regime tends to a value
which is close (ignoring here, for the sake of simplic-
ity, many-body corrections) to the Fermi velocity, Sc →
vF, while in the hydrodynamic regime it converges to the
speed of sound in a neutral Fermi liquid [48,56], i.e., Sh →
vF

√
(D∗K )/(2DK∗) ≈ vF/

√
2. The situation is even more

dramatic for the damping ω. In the hydrodynamic regime,
and for � � 1, we have h ≈ γ /2 + ω2/[4(γ + γee)], while
c ≈ γ + γee, implying that the extrinsic dissipation con-
trolled by γ becomes twice more efficient with respect to the
� � 1 case and a new damping mechanism controlled by γee

kicks in. In Fig. 3, we show the impact of � on the real and
imaginary parts of qp. When frequency increases, the damping
starts to acquire a significant contribution from e-e collisions.
This shows up as viscous dissipation in the hydrodynamic
regime—see the second term in Eq. (13). In this regime,
indeed, the contribution to the damping is proportional to
q2 and therefore to ω2, since we are probing the damping
along the AP dispersion. When frequency is further increased
above γee, the e-e contribution to the damping saturates to a
finite value. Note that since in hydrodynamic electron liquids
γee � γ , this contribution can be the dominant one even with
moderate values of � and lead to a significant increase of the
imaginary part of q, as shown in Fig. 3(b).

V. COUPLING EFFICIENCY TO A NEAR-FIELD PROBE

In order to design experiments that are able to probe
the collisionless to hydrodynamic crossover with light, it is
important also to consider the coupling strength of APs to
an external field [49]. We characterize the coupling to an
external near-field probe using the quantity ηz(ω) defined by
the ratio between the power 〈W 〉AP(z) fed into the AP mode
by a dipole source of strength p and frequency ω, located at
an height z, with its axis perpendicular to the 2D liquid, and
the power radiated by the same source in vacuum, given by
Larmor’s formula

WLarmor = p2ω4

3c3
. (14)

We characterize the effect of the dipole by an oscillating
charge density

ρext (q, z′, ω) = −pδ′(z′ − z), (15)

where δ′(z) is the derivative of δ(z) with respect to
its argument. The field it generates is Ed(r, z, ω) =
−∇φd(r, z, ω), with

φd(r, z, ω) =
∫

d2q
(2π )2

eiq·r
∫

dz′G(q, z, z′)ρext (q, z′, ω)

=
∫

d2q
(2π )2

eiq·r pG′(q, zd , z), (16)

where G(q, z, z′) is the electrostatic Green function defined in
Sec. III and G′(q, z, z′) ≡ ∂zG(q, z, z′).

The field Ed(r, z, ω) induces a charge oscillation in the
electron liquid, which absorbs an average power

〈W 〉(z) =
∫

d2r
1

2
Re[−eJ∗(r, ω) · Ed(r, 0, ω)]

= ωe2 p2

2

∫
dqq

2π

|G′(q, z, 0)|2
G(q, 0, 0)

L(q, ω). (17)

Here L(q, ω) ≡ −Im[1/εL(q, ω)] is the loss function of the
electronic system. The details of this derivation are presented
in Appendix E.

Since we are interested only in the power fed into the AP,
which will be denoted by the symbol 〈W 〉AP(z), we consider
only the contribution to the above integral coming from wave
vectors smaller than the edge qeh of the intraband electron-
hole continuum, qeh(ω) ≡ lim�→∞ Re[qp(ω)].
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FIG. 4. Coupling efficiency ηz(ω) as a function of frequency.
Results in this figure refer to SLG separated from a metal gate
by an hBN spacer of thickness d = 4 nm, having ε̄xx = ε̄yy = 6.68
and ε̄zz = 3.56. Squares correspond to excitation in the center of
the spacer z = −2 nm, while circles correspond to z = 10 nm,
above SLG. Solid (dashed) lines represent the approximate result of
Eq. (19) for excitation at z = −2 nm (z = 10 nm), setting Z = −0.5.
Different colors refer to different values of the screening parameter:
� = 0.25 (blue), 0.5 (orange), and 2 (green). All other parameters
are as in Fig. 3.

Finally, using the definition of the coupling efficiency as
the ratio ηz(ω) ≡ 〈W 〉AP(z)/WLarmor, we obtain the expression

ηz(ω) = 3c3

4πω3

∫ qeh (ω)

0
dqq

|G′(q, z, 0)|2
G(q, 0, 0)

L(q, ω). (18)

In Fig. 4, we show the numerically-calculated dependence
of ηz(ω) on frequency for different vertical positions z of
the dipole for the aforementioned case of a 2D material
separated from a perfect metal located at z = −d by a dielec-
tric spacer. In this case, for long wavelengths, G(q, z, 0) ≈
e−qz/C if z > 0 and G(q, z, 0) ≈ (z + d )/(dC) 0 > z > −d .
Furthermore, if dissipation is small, we can approximate
the loss function, in the relevant range of wave vectors,
as a delta function peak L(q, ω) ≈ π |Z|Re(qp)δ(q − Re(qp))
with Z ≡ [Re(qp)∂qεL(q, ω)|q=qp ]−1 = −[2 + qP∂qσL(q, ω)
|q=qp/σL(qp, ω)]−1 ≈ −1/2. Using these approximations in
Eq. (18) we get the approximate result for ηz(ω):

ηz(ω) ≈ 3π |Z|c3[Re(qp)]3

ε̄ω3
×
{

dRe(qp)e−2Re(qp )z z > 0

[dRe(qp)]−1 0 > z > −d
,

(19)

where Z ≡ [Re(qp)∂qεL(q, ω)|q=qp ]−1 = −{2 + qp∂q ln[σL

(qp, ω)]}−1 ≈ −1/2. Since qpd is a small number, we see
that the AP modes are much more coupled to a dipole located
between the material and the gate. This happens because the
electric field of AP modes is mainly concentrated in the spacer
region [50]. This suggest that to couple efficiently to these
modes, structures specially designed for launching plasmons
should be put in the region where the field is concentrated.

VI. CONCLUSION

In summary, we have studied the dispersion and damping
of APs in a 2D electron liquid at the crossover between the
hydrodynamic and collisionless regimes. We have found that,

in the presence of strong screening by an external gate, both
the velocity and the damping of AP modes are enhanced in
the collisionless regime, with the enhancement being more
dramatic for the damping. If the screening is strong enough,
i.e., if � > 1, well defined APs with a phase velocity smaller
than the Fermi velocity vF (but larger than the sound velocity
≈vF/

√
2) are allowed in the hydrodynamic regime.

Our theory relies on the presence of only one electron
band close to the Fermi level and cannot therefore be directly
applied to graphene close to charge neutrality. Interestingly,
we notice that the hydrodynamic theory for graphene (see,
e.g., Ref. [48]) also predicts (after taking into account
the screening of the electric potential by a metal gate)
that the plasmon velocity converges to ≈vF/

√
2 for low

electron densities. A more general kinetic theory approach
for single-layer graphene was developed in Refs. [51,52],
neglecting Landau parameters.

The crossover between the collisional and the hydrody-
namic regime can be considered the 2D electronic analogous
of the transition between the first and zero sound in neutral
Fermi liquid. This was predicted by Abrikosov and Khalat-
nikov [53,54] and experimentally verified [55], for example,
in liquid He3.

Notice that some properties of plasmons in 2D Fermi
liquids have been discussed in two recent publications,
Refs. [52,56]. However, the former mainly focusses on the
difference between long-range and short-range interactions,
and considers only the many-body compressibility renormal-
ization. In the latter work, effects beyond RPA are neglected,
and so are momentum nonconserving processes. We have,
however, demonstrated that the latter processes are important
to correctly describe the plasmon damping and introduce the
possibility of having overdamped excitations at low frequen-
cies and long wavelengths, as shown in Eqs. (11) and (13). The
nonlinear electromagnetic response of a Dirac electron fluid
at the crossover between the collisionless and hydrodynamic
regimes has been discussed in Ref. [57].
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APPENDIX A: LINEARIZED BOLTZMANN EQUATION

For sufficiently long wavelengths (long compared with the
inverse of the Fermi wave vector kF) and low frequencies (low
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with respect to the Fermi energy EF and to the energy Eg of
the lowest interband excitation), an interacting 2D electron
system can be described as a gas of weakly interacting quasi-
particles [1,2]. If the system is in the paramagnetic state and
there is no external perturbation coupling to the spin degrees
of freedom, the dynamics of quasiparticles is governed by the
classical, spin-independent, Hamiltonian [1,2]

H(r, p, t ) = ε∗
p − eφ(r) + UL(r, p, t ). (A1)

Here, ε∗
p is the band energy of an electron with momentum

p, renormalized by e-e interactions, φ(r, t ) is the electric
scalar potential, and UL(r, p, t ) is the spin-averaged Landau
interaction potential defined by

UL(r, p, t ) = L2

2h̄2

∑
σσ ′

∫
d2 p′

(2π )2
fpσ,p′σ ′δ f (1)(r, p′, t ), (A2)

where fpσ,p′σ ′ is the Landau interaction function[2] between
an electron with momentum p and spin σ and an electron with
momentum p′ and spin σ ′, δ f (1)(r, p, t ) is the deviation of the
one-particle, spin summed, distribution function f (1)(r, p, t )
from its equilibrium value, and L2 is the surface of the 2D
electron system. The Landau interaction function describes, in
a mean-field way, dynamical exchange and correlation effects
arising from the deviation of the occupation numbers of the
electronic states from their equilibrium values.

The classical Hamiltonian (A1) determines the response of
quasiparticles via the Landau kinetic equation [1,2]:

[∂t + vvv(r, p, t ) · ∇r + F(r, p, t ) · ∇p] f (1)(r, p, t )

= Sel{ f (1)(r, p′, t )}(r, p, t ) + See{ f (1)(r, p′, t )}(r, p, t ),

(A3)

where vvv(r, p, t ) ≡ ∇pH(r, p, t ) is the quasiparticle veloc-
ity, F(r, p, t ) ≡ −∇rH(r, p, t ) = −eE(r, t ) − ∇rUL(r, p, t )
is the total force acting on quasiparticles, E(r, t ) =
−∇rφ(r, t ) being the electric field, Sel{ f (1)(r, p′, t )}(r, p, t ) is
the collision integral that takes into account collisions with the
lattice (i.e. electron-phonon scattering) and electron-impurity
collisions, while See{ f (1)(r, p′, t )}(r, p, t ) is the collision inte-
gral for e-e scattering.

To simplify Eq. (A3) we introduce the following ansatz
[27]:

f (1)(r, p, t ) = f0(ε∗
p ) − f ′

0(ε∗
p )

+∞∑
m=−∞

Fm(r, t )eimθp, (A4)

where f0(ε) = {exp[(ε − μ̄)/(kBT )] + 1}−1 is the equilib-
rium Fermi-Dirac distribution function at chemical potential
μ̄ and temperature T , f ′

0(ε) is its derivative with respect to the
energy ε.

Inserting this ansatz in Eq. (A3), retaining only terms that
are linear in the coefficients Fm(r, θp, t ), integrating over the
energy ε∗

p, Fourier transforming with respect to time, and
making use of the parametrization

fp↑,p′↑ + fp↑,p′↓
2

= 1

L2N ∗

∞∑
l=−∞

F s
|l|e

il (θp−θp′ ) (A5)

of the Landau interaction function in terms of the so-called
dimensionless Landau parameters [2,40] F s

l – where, N ∗ is
the renormalized density of states at the Fermi level and θp is
the polar angle of the vector p – we obtain

−iω
+∞∑

m=−∞
Fm(r, ω)eimθp + v∗

F p̂ ·
[ +∞∑

m=−∞

(
1 + F s

|m|
)∇Fm(r, ω)eimθp + eE(r, ω)

]
= −

+∞∑
m=−∞

[
el

m + ee
m

]
Fm(r, ω)eimθp . (A6)

Here, E(r, ω) is the total electric field, i.e., the sum of the external field and the field generated by the electron distribution itself
(the Hartree self-consistent field), v∗

F ≡ |∇pε
∗
p|p=h̄kF is the Fermi velocity as renormalized by e-e interactions, p̂ = p/|p|, and the

relaxation coefficients ee/el
m are defined in terms of the respective linearized collision integrals by

λ
m =

∫ ∞

−∞
dεp

∫
dθp

2π
e−imθpSλ

1 {− f ′(εp′ )eimθp′ }(p), (A7)

where λ = ee, el identifies the scattering mechanism. Conservation of the particle number in collisions forces 0 to vanish for all
scattering processes. Similarly, the conservation of total momentum forces ±1 to vanish for e-e collisions, while electron-lattice
and electron-impurity processes are not subject to this constraint.

We are now interested in solving Eq. (A6) in the presence of translational invariance. To this aim, we perform a Fourier
transform on the spatial variable, multiply (A6) by exp(−inθp), and average over the angle θp. This yields the infinite matrix
equation ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
... . .

.

· · · a−2 b−1 0 0 0 · · ·
· · · b∗

−2 a−1 b0 0 0 · · ·
· · · 0 b∗

−1 a0 b1 0 · · ·
· · · 0 0 b∗

0 a1 b2 · · ·
· · · 0 0 0 b∗

1 a2 · · ·
. .

. ...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

F−2(q, ω)
F−1(q, ω)
F0(q, ω)
F1(q, ω)
F2(q, ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − iev∗
F

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

0
E (+)(q, ω)

0
E (−)(q, ω)

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)
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where

an = ω + iee
n + iel

n (A9)

and

bn = b
(
1 + F S

|n|
)
. (A10)

Here, b = −v∗
Fq(+)/2, with q(±) = qx ± iqy, and E (±)(q, ω) =

Ex(q, ω) ± iEy(q, ω).
The solution of Eq. (A8) requires the inversion of the

tridiagonal matrix M appearing on the left-hand side of this
equation. In what follows we evaluate the relevant elements
of M−1, using the continued fraction method [43], with the
aim of calculating the response of the electron density to a
longitudinal electric field.

Up to now our model has been completely general. For
the purpose of obtaining a simple expression for the response
function, we make the following assumptions: (i) the electron-
lattice and electron-impurity processes are characterized by
only one parameter, i.e., γ . We therefore have el

0 = 0 and
el

m = γ for |m| > 1. (ii) The e-e collisions are described
by only one parameter, i.e., γee, resulting in ee

0 , ee
±1 = 0,

and ee
m = γee for |m| > 1. (iii) We consider only the zeroth-

and first-order Landau parameters, F s
0 and F s

1 , respectively,
while all the F s

l with l � 2 are set to zero. The solution
method presented in the next section can, however, be trivially
generalized to any finite number of Landau parameters and
relaxation rates.

With the aforementioned approximations, we find a0 = ω,
a±1 = ω + iγ , am = ω + iγtot, with γtot ≡ γ + γee for |m| �
2, while b0 = b(1 + F s

0 ), b±1 = b(1 + F s
1 ), and bm = b for

|m| � 2.

APPENDIX B: DERIVATION OF
HYDRODYNAMIC EQUATIONS

Following Ref. [27], we can obtain the hydrodynamic
equations by truncating the matrix Mi j , retaining only the
elements with i, j � 2.

For i = 0, we obtain the continuity equation

−iωn(q, ω) + iq · J(q, ω) = 0, (B1)

where the induced density is directly related to F0(q, ω) by

n(q, ω) ≡
∫

d2 p δ f (1)(q, p, ω) ≈ N ∗F0(q, ω), (B2)

and the current is related to F±1(q, ω) by

J(r, ω) ≡
∫

d2 pvvv(r, p,ω) f (1)(r, p, ω)

≈ N ∗v∗
F

2

(
1 + F s

1

)( F−1(r, ω) + F1(r, ω)

iF1(r, ω) − iF−1(r, ω)

)
.

(B3)

In the above equations, we neglected, for consistency, terms
of higher order in the coefficients Fn(q, ω) and ignored the
thermal smearing of the Fermi-Dirac function.

From the two equations for i = ±1 and using
the equations for i = ±2 to eliminate F±2(q, ω),
we obtain

−iωJ(q, ω) = −γ J(q, ω) − (v∗
F)2

(
1+F s

0

)(
1 + F s

1

)
2

iqn(q, ω)

− e(v∗
F)2N ∗(1 + F s

1

)
2

E(q, ω)

− (v∗
F)2

(
1 + F s

1

)
4(γ + γee − iω)

q2J(q, ω). (B4)

By taking the limit ω � γ + γee in the last term and identify-
ing

(v∗
F)2

(
1 + F s

1

)
4(γ + γee )

= ν∗, (B5)

v2
FN
2

= n̄

m
, (B6)

v∗
F

vF

(
1 + F s

1

) = D∗

D , (B7)

n̄mvFv
∗
F

(
1 + F s

0

)
2

= 1

K∗ , (B8)

we obtain the Navier-Stokes equation (1) in the main text.

APPENDIX C: LONGITUDINAL RESPONSE

In this Appendix, we calculate the density response
to a longitudinal field. In this case, we write E(q, ω) =
−iqφ(q, ω), yielding E (±)(q, ω) = −iq(±)φ(q, ω). We are in-
terested in calculating the density response, which, as stated
in Eq. (B2), is proportional to F0(q, ω). The proper density-
density response function [2] of the system is then given by

χ̃nn(q, ω) = N ∗F0(q, ω)

−eφ(q, ω)

= −N ∗{b[M−1]0,−1 + b∗[M−1]0,1}

= N ∗ a0[M−1]00 − 1

1 + F s
0

. (C1)

In writing the last equality we had to invert the matrix M in
Eq. (A8). We also used (i) the Kramers rule expression for the
inverse matrix elements [M−1]0,±1 = −D±1,0/D, [M−1]00 =
D0,0/D, where Di, j is the determinant of the matrix obtained
from M by suppressing the ith row and the jth column and
D = det[M]. (ii) The Laplace expansion on the zeroth column
of the determinant D, which yields D = a0D0,0 − b0D−1,0 −
b∗

0D1,0. (iii) b0 = b(1 + F s
0 ).

For a tridiagonal matrix M in the form (A8), a diagonal
element of the inverse matrix M−1 can be expressed as a
continued fraction [43]

[M−1]00 = 1

a0 − b1b∗
0

a1− b2b∗
1

a2−···
− b0b∗

−1

a−1−
b−1b∗−2
a−2−···

= 1

a0 − 2|b|2(1+F s
0 )(1+F s

1 )
a1+(1+F s

1 )ξ (q,ω)

, (C2)
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where ξ (q, ω) respects the self-consistent equation

ξ (q, ω) = −|b|2
a2 − |b|2

a2− |b|2
···

= − |b|2
a2 + ξ (q, ω)

. (C3)

Solving for ξ (q, ω) and substituting the values of a2 and b, we obtain

ξ (q, ω) = ω + iγtot

2

⎡
⎣
√

1 − (v∗
F)2q2

(ω + iγtot )2
− 1

⎤
⎦. (C4)

Here, we chose the solution of Eq. (C3) with the positive sign of the square root to make sure that the first-order expansion of ξ

in powers of |b|2 in Eq. (C4) coincides with the truncation of the continued fraction up to first order in Eq. (C3).
Making use of Eqs. (C1)–(C2) and (C4), we obtain the final result

χ̃nn(q, ω) =
(
1 + F s

1

)
(v∗

F)2N ∗q2

ω(ω + iγ )
(
1 − F s

1

) − (
1 + F s

1

)[
iγeeω − ω

√
(ω + iγtot )2 − (v∗

F)2q2 + (v∗
F)2q2

(
1 + F s

0

)] . (C5)

Equation (C5) is the semiclassical density-density response
function of a 2D electron liquid, taking into account
momentum-conserving and momentum-nonconserving colli-
sions, and many-body effects through the renormalization
of vF and N , and the Landau parameters F s

0 and F s
1 . This

result can be easily converted into the longitudinal con-
ductivity in Eq. (2) of the main text using χ̃nn(q, ω) =
−iq2σL(q, ω)/(e2ω), Eqs. (B7) and (B8), and N /N ∗ =
v∗

F/vF.

APPENDIX D: EXACT SOLUTION OF
PLASMON EQUATION

This Appendix is devoted to the calculation of the solution
of the plasmon equation εL(q, ω) = 0 with εL(q, ω) given by
Eq. (8) of the main text.

By rearranging the various terms, the equation εL(q, ω) =
0 is equivalent to√

(ω + iγ + iγee)2 − (qv∗
F)2 =(

�−1 + K
K∗
)
v∗

F

ωvF
(qvF)2 − 2Dv∗

F(ω + iγ )

D∗vF

+ (ω + iγ + iγee). (D1)

Under the condition

Re

[(
�−1+ K

K∗
)
v∗

F

ωvF
(qvF)2 − 2Dv∗

F(ω + iγ )

D∗vF
+ (ω+iγ+iγee)

]

� 0, (D2)

this becomes (qvF

ω

)4
+ Q

(qvF

ω

)2
+ R = 0, (D3)

with

Q = ωD∗
D

v∗
F

vF
−2

[(
2 v∗

F
vF

−D∗
D
)
(ω+iγ )−iD

∗
D γee

](
�−1+ K

K∗
)

ω
(
�−1+ K

K∗
)2 D∗

D
v∗

F
vF

,

(D4)

and

R = −4(ω + iγ )
[D∗
D (ω + iγ + iγee) − v∗

F
vF

(ω + iγ )
]

ω2 v∗
F

vF

(D∗
D
)2(

�−1 + K
K∗
)2 . (D5)

Equation (D3) is a quadratic equation for (qvF/ω)2 with
solutions

(qvF

ω

)2
= −Q

2
−

√
Q2 − 4R

2
= −Q

1 +
√

1 − 4RQ−2

2
,

(D6)

where we discarded the second solution since it gives Im(q) <

0, which has no physical meaning. Finally, Eq. (D6) is equiv-
alent to the result of the main text if we define the following
quantities as the velocity and damping, respectively,

Sω = vF√
Re

[( qvF

ω

)2] (D7)

and

ω = ω

2

Im
[( qvF

ω

)2]
Re

[( qvF

ω

)2] . (D8)

In order to obtain expressions for Sω and ω in the col-
lisionless limit, we expand up to linear order in γ /ω and
γee/ω. We find Q ≈ Q0 + iγ /ωQγ + iγee/ωQee and R ≈
R0 + iγ /ωRγ + iγee/ωRee, where

Q0 = −2
(
2 v∗

F
vF

− D∗
D
)(

�−1 + K
K∗
) − D∗

D
v∗

F
vF(

�−1 + K
K∗
)2 D∗

D
v∗

F
vF

, (D9)

Qγ = − 2
(
2 v∗

F
vF

− D∗
D
)

(
�−1 + K

K∗
)D∗
D

v∗
F

vF

, (D10)

Qee = 2D∗
D(

�−1 + K
K∗
)D∗
D

v∗
F

vF

, (D11)
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and

R0 = − 4
(D∗
D − v∗

F
vF

)
v∗

F
vF

(D∗
D
)2(

�−1 + K
K∗
)2 , (D12)

Rγ = − 8
(D∗
D − v∗

F
vF

)
v∗

F
vF

(D∗
D
)2(

�−1 + K
K∗
)2 , (D13)

Ree = − 4
v∗

F
vF

D∗
D
(
�−1 + K

K∗
)2 . (D14)

The replacement of the approximate expressions for Q and
R, with the coefficients above, into Eq. (D6) results in the
following expression:

(qvF

ω

)2
≈
⎡
⎣−Q0

1 +
√

1 − 4R0Q−2
0

2

⎤
⎦

+ iγ

ω

Qγ

[−Q0
1+

√
1−4R0Q−2

0

2

] + Rγ

Q0

√
1 − 4R0Q−2

0

+ iγee

ω

Qee
[−Q0

1+
√

1−4R0Q−2
0

2

] + Ree

Q0

√
1 − 4R0Q−2

0

. (D15)

Finally, the replacement of Eq. (D15) into Eqs. (D7) and (D8)
yields Eqs. (10) and (11) of the main text.

On the other hand, we can obtain the corresponding results
in the hydrodynamic limit by expanding (D6) for γee � ω.
This leads to (qvF

ω

)2
+ Rh = 0, (D16)

with

Rh = −2(ω + iγ )
D∗
D ω

[(
�−1 + K

K∗
) − i v∗

Fω

2vF (γ+γee )

] . (D17)

Replacing Eq. (D16) into Eqs. (D7) and (D8) results in
Eqs. (12) and (13) of the main text.

APPENDIX E: AVERAGE POWER

In this Appendix, we briefly reconstruct the steps used for
the calculation of the average power absorbed by the electron
liquid.

Starting from the first line of Eq. (17), we use the continuity
equation to obtain

〈W 〉(z) =
∫

d2r
1

2
Re[−eJ∗(r, ω) · Ed(r, 0, ω)]

= 1

2
Re

[
iωe

∫
d2r n∗(r, ω)φd(r, 0, ω)

]
.

(E1)

Next, using Parseval’s theorem

〈W 〉(z) = 1

2
Re

[
iωe

∫
d2q

(2π )2
n∗(q, ω)φd(q, 0, ω)

]

= 1

2
Re

[
−iωe2

∫
d2q

(2π )2
χ∗

nn(q, ω)|φd(q, 0, ω)|2
]
,

(E2)

where we also made the identification n(q, ω) =
χnn(q, ω)(−e)φd(q, 0, ω), χnn(q, ω) being the density-density
response function of the electron system. Finally, using
Im[χnn(q, ω)] = Im[1/(vqεL(q, ω))], defining the loss
function L(q, ω) = −Im[1/εL(q, ω)], and making use of
the definition of the interaction potential (4), and of the
Fourier transform of (16), we obtain the result in the last line
in Eq. (17):

〈W 〉(z) = −ωe2

2

∫
d2q

(2π )2
|φd(q, 0, ω)|2Im[χnn(q, ω)]

= ωe2

2

∫
d2q

(2π )2
|φd(q, 0, ω)|2Im

[ −1

vqεL(q, ω)

]

= ωe2 p2

2

∫
d2q

(2π )2

|G′(q, z, 0)|2
G(q, 0, 0)

L(q, ω)

= ωe2 p2

2

∫
dqq

2π

|G′(q, z, 0)|2
G(q, 0, 0)

L(q, ω). (E3)
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